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Abstract. Device-free human intrusion detection holds great potential
and multiple challenges for applications ranging from asset protection to
elder care. In this paper, leveraging the fine-grained Channel State Infor-
mation (CSI) in commodity WiFi devices, we design and implement an
adaptive and robust human intrusion detection system, called AR-Alarm.
By utilizing a robust feature and self-adaptive learning mechanism, AR~
Alarm achieves real-time intrusion detection in different environments
without calibration efforts. To further increase the system robustness,
we propose a few novel methods to distinguish real human intrusion
from object motion in daily life such as object dropping, curtain swing-
ing and pets moving. As demonstrated in the experiments, AR-Alarm
achieves a high detection rate and low false alarm rate.
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1 Introduction

Device-free intrusion detection intends to inform whether there is a person break-
ing in the area of interests without attaching any devices. It is essential for vari-
ous smart home scenarios such as asset protection, home security, child and elder
care. In order to achieve device-free intrusion detection, various techniques have
been proposed and studied, among which video-based [3] approach is one of the
most popular methods. It utilizes cameras installed in the environment capturing
image or video sequences for scene recognition. Its main problems include the
privacy concern, inherent requirement for lighting condition and high false alarm
rate. Other sensor-based approaches try to make use of information caused by
human walking to detect intrusion but disturbance coming from the environment
often causes a large portion of false alarms. Moreover, all these methods share
the requirement of installing special hardware in the environment.
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Due to the limitations of the above-mentioned device-free intrusion detec-
tion methods, the low cost, easily available Wi-Fi devices are utilized to sense
human intrusion. A typical WiFi based intrusion detection system consists of two
phases: off-line calibration and online monitoring. During the off-line calibration
stage, both data without human motion and with human motion are gathered
to construct a normal profile and determine a detection threshold. Then in the
online monitoring stage, once the deviation from the normal profile exceeds a
pre-determined threshold, an intrusion event is detected.

Based on this principle, prior works [10,13,15] leverage the correlation of CSI
(Channel State Information) measurements over time to infer intrusion occur-
rence. However, these methods are environment dependent and a labor-intensive
learning process is often needed when the environment changes, i.e. furniture
moves, WiFi device location changes, or deployment in another environment.
Apart from the cumbersome environment dependent learning process, it is also
intrinsically challenging for these systems to avoid false alarms caused by com-
mon scenes in daily life such as dropping object, swinging curtain and small
pets’ movement, which could also result in significant changes of CSI profile.

Aiming to overcome the limitations of state of art approaches, in this paper,
we propose an adaptive and robust human intrusion detection system, called
AR-Alarm. For the first time, AR-Alarm achieves real-time human intrusion
detection in different environments without calibration efforts. To reach the goal,
we firstly extract a robust feature using the ratio between the dynamic and static
CSI profiles of the environment. And based on this feature, our system only
needs to learn the static CSI profile through a self-adaptive mechanism when
the applied environment changes. In order to further improve the robustness
of the system, we consider the common scenes in daily life such as dropping
object, swinging curtain and small pets’ movement, and have proposed a series
of schemes to distinguish human intrusion from these events.

The rest of the paper is organized as follows. We first review the related work
in Sect. 2. Then we introduce some preliminaries about channel state information
and our study about feature selection in Sect. 3. In Sect. 4, we present the detailed
design of our proposed system, AR-Alarm, followed by the experiment evaluation
in Sect. 5. Finally, we conclude the work in Sect. 6.

2 Related Work

In this section, we review the related work from two perspectives: research on
passive intrusion detection and research on WiFi based intrusion detection.

Related work on passive intrusion detection. The earliest and most
researched approach is based on vision techniques. For example, [3] utilized
video-based algorithms to analyze sequences of images captured by cameras
and to track moving people. However, these video-based systems still have a
set of open issues to be resolved, such as privacy concern, intensive computation
for real-time processing. Infra-based approaches [8] utilize human blocking of
light beams to report an intrusion. They could preserve human privacy but are
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restricted to line-of-sight scenarios, and not be able to cover the entire area of an
environment. Audio [6] and pressure [9] sensor information could also be used for
intrusion detection, whose rationale is that intrusion activities will cause changes
in acoustic noise or floor vibration. However, they are easily influenced by other
sources of sound or pressure in the environment, leading to false alarms.

Related work on Wi-Fi based intrusion detection. Since RSS (Received
Signal Strength) measurements are handily accessible in most existing wireless
devices, it is widely studied to detect human presence and intrusion relying on
RSS variance [7,16]. Despite its ease of access, RSS can fluctuate dramatically
even at a stationary link [14], leading to unreliable detection results. Compared
with RSS, CSI (Channel State Information) is a more fine-grained signal feature,
that characterizes the multipath effect at the granularity of OFDM subcarrier in
the frequency domain [2]. Similar to RSS-based systems, most CSI-based intru-
sion detection systems also leverage variations in CSI measurement to inform
target presence or intrusion. Specifically, FIMD [15] leverages correlation of CSI
amplitude over time to extract features and achieves device-free human motion
detection. Further, PADS [10] extracts phase information from CSI and com-
bines both phase and amplitude information to improve human detection accu-
racy. DeMan [13] not only utilizes temporal stability of CSI to detect dynamic
human but also observes the periodic fluctuation of CSI due to human respira-
tion to detect stationary human. An omnidirectional passive human detection
system is proposed by Zhou [18], which virtually shapes the targeted coverage
area by using PHY layer features. The paper [17] proposes a metric for com-
modity WiFi as a proxy for detection sensitivity to characterize the impact of
human presence on wireless signals. However, all these works need on-site and
environment-specific threshold calibration or model building when the target
environment changes. Although in [4], a link sensitivity indicator is proposed to
depict abundance of multipath propagation for accommodating to the environ-
ment change but multiple location attempts are still required to calibrate the
system in advance.

Unlike existing intrusion detection schemes that require labor-intensive cal-
ibration or multiple location data collection when the target environment
changes, our work aims to minimize such labor intensive overhead through adopt-
ing a robust feature and a self-adaptive learning mechanism. Moreover, we also
take the easily confused daily events into account and propose effective schemes
to distinguish real human intrusion from object motion, which are often ignored
by existing work on human intrusion detection.

3 Preliminaries and Observations

In this section, we firstly introduce the Channel State Information (CSI) acces-
sible on commodity Wi-Fi devices. Then based on intensive empirical study, we
present a robust feature to characterize the change of CSI signal for intrusion
detection.
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3.1 Channel State Information

Channel State Information (CSI) is information that estimates the channel by
representing the channel properties of a communication link. In the wireless
communication system, the received baseband signal in frequency domain is:

y=Hzx+n (1)

where y and z are the received and the transmitted signal vectors respectively,
n denotes the channel noise vector, H is the channel state information matrix. To
estimate the channel state information matrix H, a predetermined pilot sequence
is transmitted. According to the received sequence, receiver estimates the channel
state information matrix by H = y/x, which contains the amplitude information
and phase information. And CSI can be mathematically depicted as:

H = |H|e" (2)

where |H| and 6 are the amplitude and phase, respectively. To increase
communication capacity, current Wi-Fi standards (e.g., IEEE 802.11 n/ac) use
orthogonal frequency division modulation (OFDM) technology in physical layer
to split the whole spectrum band (20 MHz) into multiple (56) frequency sub-
bands, transmitting data across multiple subcarriers in parallel. Each subcarrier
can be viewed as an independent communication link and has its own CSI. In
other words, every subcarrier CSI of all subcarriers gets together to form the
CSI matrix of the system.

3.2 Robust Feature Selection

In typical indoor scenarios, Wi-Fi signals propagate from the transmitter to
receiver through multiple paths such as floor, wall and furniture. When a person
moves in the environment, additional signal paths are introduced by the reflec-
tion of human body. Correspondingly, the value of CSI will reflect the change of
these paths. So the amplitude variation and phase in the CSI stream can be lever-
aged to detect human intrusion. In AR-Alarm, we utilize the phase difference
over two antennas as the salient signal to sense the change of the environment,
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Fig. 1. Phase difference of static and dynamic environment
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for better sensitivity to signal variation [11]. Figure 1 shows the CSI phase dif-
ference in static and human intrusion environments. Whenever there is object
movement in the environment, we can observe a change in the signal.

How do we mathematically characterize the signal variance of CSI phase
difference? Intuitively, we can use the standard deviation to characterize the
variance of the signal as shown in Fig.2a. Unfortunately, like the fingerprint
based solution, the threshold needs to be determined according to the envi-
ronment change. Specifically, when we adjust the location of the receiver, the
standard deviation of the signal variance is shown in Fig.2b. If we change the
room for experiment, the standard deviation changes as shown in Fig. 2c. As we
can see, the threshold in scenario 1 (Fig.2a) can’t be applied directly to other
scenarios. Through intensive experiment study, we find that if we use the maxi-
mum standard deviation of phase difference in static environment to normalize
that in human intrusion scenarios, we don’t need to learn a new threshold for
a new scenario, as shown in Fig.3. If o is the standard deviation of CSI phase
difference, then the robust feature can be selected as follows:
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Fig. 2. Standard deviation of phase difference in different scenarios
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Fig. 4. Overview of the AR-Alarm

4 The AR-Alarm Human Intrusion Detection System

Our proposed real-time intrusion detection system, AR-Alarm, consists of four
modules: signal preprocessing, motion detection, environment self-adaptation
and intrusion detection. As shown in Fig. 4, the collected CSI signal streams
are first fed into the signal preprocessing module to ensure the extracted phase
difference continuous in a shared Wi-Fi channel and eliminate out-band inter-
ference. Then in motion detection module, we extract features as proposed in
previous section to coarsely decide whether there is a moving object or person
in the environment. If the answer is YES, the CSI signals are then fed into the
intrusion detection module for finer-grained human motion detection. Otherwise,
the environment self-adaptation module is triggered to update the static profile
frequently to accommodate environment changes in real-time.

4.1 Signal Preprocessing

The goal of signal preprocessing is threefold: (1) Make the phase difference over
two antennas as basic signal; (2) Deal with the uneven arrival of packets caused
by the burst Wi-Fi transmissions. (3) Go through a band-pass filter to filter out
non-human activities.

Phase Difference Extraction. Because of the phase offset caused by various
factors [11], the phase information in commodity Wi-Fi can not be used directly
to sense human intrusion. We utilize the phase difference over two antennas to
be a robust signal [11].

Interpolation. Wi-Fi is a shared channel, where multiple devices use random
access to share the medium. This results in the received packets that are not
evenly spaced in time domain. To get evenly received samples, we adopt the 1-D
linear interpolation algorithm to process the raw CSI readings. Since the duration
of typical human intrusion is greater than one second, the above interpolation
operation preserves the human intrusion information.

Band-pass Filter. According to work [12], the frequency of CST amplitude vari-
ation could reveal the human motion speed. Similarly, from the time-frequency
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Fig. 5. Time-frequency analysis of different activities

analysis of phase difference in Fig. 5, we can see human intrusion induces obvi-
ous power profile in higher frequency than that caused by swinging curtain. And
according to work [1], normal walking speeds ranges from 1.25m/s to 1.5 m/s for
human being. So we extract the signal whose frequency is in the range between
10Hz (0.3 m/s) and 70 Hz (2m/s) with a band-pass filter. By applying this filter,
our system could filter out not only the high-frequency noise but also the low
frequency disturbance caused by swinging curtain.

4.2 Motion Detection

In this module, we first extract feature from the filtered CSI phase difference
signal, and then decide whether there is a moving object or human subject in
the environment. This module contains two steps: (1) Feature Extraction (2)
Motion Discriminant.

Feature Extraction. After the preprocessing in Sect. 4.1, we acquire the filtered
phase difference signal as input for this step. Then based on the study in Sect. 3.2,
we calculate the normalized standard deviation pi,.,, in a sliding window as the
robust feature for further processing. It is depicted as follows:

O—’I'LO’LU
_ o 4
Hnow = 02 (T ratie) @

Onow Means the standard deviation of current filtered CSI phase difference.
max (T static) 1S the maximum value of standard deviation in the static environ-
ment which is updated with time. And its initial value was attained when the
system was started for the first time. After calculation, both ¢4 and fiyeq will
be used in next step for processing.

Motion Discriminant. Based on the extracted feature, we further propose
a threshold-based method to decide whether there exists any motion in the
environment, no matter what causes the motion. To check if the whole sliding
window lies in the static state, we compare fi,,, With a pre-defined threshold
Omotion- 1f it is larger than &,,0i0n, the feature 1,0, Will be passed to intrusion
detection module to see if it is caused by human intrusion or object motion.



218 S. Li et al.

Otherwise, it implies a static environment and the environment self-adaption
module will be triggered.

4.3 Environment Self-adaption

In this module, a real-time static profile update scheme is implemented to accom-
modate the environment change. Whenever there is no motion in the environ-
ment, the static profile will be updated. Specifically, the maximum standard
deviation value of 0,,,, is computed, afterwards we update the previous result
with max(opew) for later feature extraction in the motion detection module.
Through this self-learning mechanism, our system could accommodate the envi-
ronment change in real time and achieve the environment self-adaption.

4.4 Intrusion Detection

In this module, we develop two schemes to differentiate the intrusion from object
motions in daily life. A duration based filter is used to get rid of very short-term
object motions such as dropping objects, while a magnitude based filter is applied
to eliminate the interference caused by small moving objects such as pets.

Duration-based Filter. In our daily life, moving objects in the environment
could experience a high speed so that a band-pass filter could not filter them out,
those objects could be falling coat hangers or dropping boxes. Through empirical
study, we notice that these activities only last for a very short time. As shown
in Fig. 6(a), the duration of a dropping object usually lasts less than 1s, while
human intrusion often lasts longer, say lasting for at least 2s at a normal speed.
In order to filter out those short-term activities, we measure the duration for
Hnow > Omotion- 1f the duration is less than 1s, it implies object dropping;

Magnitude-based Filter. In consideration of different families, some may raise
a small pet in their home. The motion of small pets not only could reach the
same speed as human beings but also last for some time which could not be
filtered out by the last steps. However, a small pet has a smaller size which often
introduces less number of reflected paths than a human does, so the magnitude
of signal fluctuation caused by the small pet movement is smaller than that by
human intrusion as shown in Fig. 6(b). Inspired by this observation, we propose
an area-based method to differentiate human intrusion from others. First, we
calculate the integration when fiyo, is larger than d,,0tion in a time window
(e.g. 1s) and then compare the value with the threshold §4,e, to determine if
the motion it is human intrusion, which could be expressed as follows:

/(,umw > Omotion)dt > Oarea Human Intrusion

(5)
/(,u,ww > Omotion)dt < Oareq Not Intrusion
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5 Evaluation

In this section, we present the evaluation results of our AR-Alarm system using
off-the-shelf WiFi devices. First, we introduce the experiment settings. Then we
present the dataset and metrics for evaluation. Finally, we will report our system
performance in various scenarios.

5.1 Experimental Setups

Our system only needs one Wi-Fi transmitter and one receiver. We employ two
GIGABYTE miniPCs equipped with off-the-shelf Intel 5300 Wi-Fi cards as the
transmitter and receiver. The CSI tool [5] developed by Halperin is installed on
the miniPCs to collect the CSI from the receiver. The sampling rate of CSI in
our experiments is set to 500 Hz to ensure that the human intrusion could be
detected without much delay. We conduct experiments in two rooms of different
sizes to test our proposed framework as shown in Fig. 7. (office room: 3m x 4 m,
meeting room: 6m x 6m).

e @

(a) Office Room (b) Meeting Room

Fig. 7. Test environments
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5.2 Dataset and Metrics

Before the system evaluation, we firstly gather CSI data in an office room with
and without human motion to learn the system parameters and construct an
original static pattern database. Once the thresholds are determined, different
indoor multipath environments (changing room or moving furniture) will share
the same system parameters. The learning period for system parameters takes
about two minutes. Then in the testing stage, four students (three males, one
female) perform intrusion activities in the two test rooms over two months. We
deploy a camera in each room to record the activities conducted as ground truth.
And the metrics for evaluation are given below:

True Detection Rate (TDR) is the probability that the system can detect
a human intrusion.

False Positive Rate (FPR) is defined as the proportion that the system
generates an alarm when there is no human intrusion.

5.3 System Performance

In this section, we present the evaluation performance of our AR-Alarm system
from two aspects. As the techniques proposed in previous work [10,13,15] are
environment dependent, we first conduct experiments to see if our system can
automatically adjust itself to adapt to the environments while achieving com-
parable results with previous work. Then to further evaluate the robustness of
our system, we simulate several daily events which have not been considered in
previous work.

5.3.1 Adaptability to the Environment

In order to test the adaptability of our system to the indoor environment changes,
we design two challenging situations: (1) Different indoor environments, and (2)
Different environment settings.

Adaptability to Different Indoor Environments. We firstly conduct the
experiments in two different rooms (R1: Office Room, R2: Meeting Room) just
like the prior work [4,10,13,15], the WiFi transmitters are placed at various
heights from 1.2m to 2m. Diverse TX-RX distances from 2m to 7m are tested.
Both LOS and NLOS conditions (when the transmitter is blocked by an object)
are also evaluated. We divide the entire space into small grids of size 1.5m x 1.5m
and the intrusion activity takes place in every grid for several times. As shown
below in Fig. 8a, our system not only shows consistent performance across differ-
ent indoor environments but also achieves comparable performance with prior
work [4,10,13,15]. Remarkably, in order to achieve such system performance,
existing schemes [4,10,13,15] either require labor-intensive calibration or multi-
ple location data collection to suit for a different environment. In contrast, our
system is deployed in two environments without change of system parameters. So
with its self-adaptive mechanism, it could accommodate different environments
with no human efforts.
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Adaptability to Environmental Setting Changes. Besides changing the
indoor environments for experiments, we also evaluate the system against furni-
ture movement. In each environment, we move big furniture such as bookcases,
sofa, tables to different locations in order to simulate the setting changes. It is
noted that our system performance is not affected much by the movement of
these furniture. Specifically, Fig. 8b shows the performance when the sofa in R1
is moved to the window side and a big table in R2 is moved from the middle to
the wall side. In all cases, AR-Alarm system shows excellent adaptability to the
multipath environment changes.

RR-Alarm Performance RR-Alarm Performance
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Fig. 8. AR-Alarm performance

5.3.2 Robustness to Daily Events

In this part, we further study the impact of daily events such as dropping object,
swinging curtain and small pets’ movement on the system performance, to see
if we can distinguish human intrusion from these events.

Impact of dropping object. To study the influence of a dropping object to
the system performance, we manually drop the object in different positions to
simulate the dropping events happening in real life. To isolate the influence of
human, volunteers stand firmly and hold the object in hand ahead of time which
ensures the change of their posture is as little as possible in the whole dropping
process. The influence of dropping event in two test environments is presented
in Tables1 and 2, respectively. In most cases, our system could resist influence
of a dropping object. Sometimes, the object drops down and then rolls on the
floor for a period of time. In this situation, our system might cause false alarm
because of its long-lasting influence.

Impact of swinging curtain. To further test the system robustness, we evalu-
ate the influence of swinging curtain. In the experiment, volunteers wave the cur-
tain manually to simulate the effect of blowing wind. And for sake of excluding the
interference from human, the subject is requested to stay outside the room with a
cord connected to the curtain. Different waving strengths are applied to simulate
different intensity of the wind. Results are shown in Tables 1 and 2, respectively.
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Table 1. Confusion matrix of R1 Table 2. Confusion matrix of R2
G P G P
Stationary | Intrusion Stationary | Intrusion
Dropping object |96.5% 3.5% Dropping object |98% 2%
Swinging curtain |99.8% 0.2% Swinging curtain |99.5% 0.5%
Moving pet 95.2% 4.8% Moving pet 94.5% 5.5%

The false-alarm rates in two rooms are both lower than 1%, indicating that the
system is quite robust to swinging curtain.

Impact of small pets’ movement. Considering that many families have pets
or sweeping robot kind of things, we study the influence of this kind of small mov-
ing object on the system performance. Similarly, volunteers manually pull boxes
of three different size (30 x 28 x 30cm 3, 40 x 30 x 37cm?, 59 x 33 x 44 cm?)
with a cord in different routes to simulate pet movement. What’s more, for
each route, we repeat several times with different moving speeds. The results
are presented in confusion matrix shown below. Among the experiments, the
false alarms are mainly caused by the large box which has similar size with a
human torso.

6 Conclusion

In this paper, we design and implement an adaptive and robust indoor human
intrusion detection system, AR-Alarm. This is the first Wi-Fi based adaptive
intrusion detection system which addresses two challenges, i.e., the multipath
environment changes and common anomalous scenes in real life. Utilizing the
commodity off-the-shelf WiFi devices, our system could achieve a very high
detection rate and a low false alarm rate. Experimental results conducted in dif-
ferent multipath environments have demonstrated the adaptability and robust-
ness of our system. It has the potential to become a practical and non-intrusive
human intrusion detection system.

Human intrusion detection has long been a research topic in human activ-
ity sensing domain. Although we implemented quite an effective human intru-
sion detector using WiFi devices, the system still has a lot of room for further
improvement. Considering that the intruders often break in from windows or
doors, we could place transceivers properly to further improve the detection
accuracy of our system. If we could take more daily events into account, our
system will be further closer to practice. We are working on these questions and
expect to deploy the system in real homes in near future.

Acknowledgments. This work is supported by National Key Research and Develop-
ment Plan under Grant No. 2016 YFB1001200.
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