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Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer from the problems such as blind
spots in non-line-of-sight (NLOS) areas, restricted device locations, massive offline training required, and privacy concern. In this paper,
we design and implement an omnidirectional indoor intrusion detection system, named AudioGuard, using only a pair of speaker and
microphone. AudioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal propagation
in an indoor environment shows that there exist abundant multipath reflections and human movement introduces Doppler shift in echo
signals. We hence capture periodical Doppler shift caused by intruder’s walking motion to detect intrusion. Specifically, we first extract
the Doppler shift embedded in echo signals, we then propose a periodicity polarization method to cancel out the impact of the change of
radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring periodicity of Doppler shift over
time. Extensive experiments show that AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion,
respectively, and a false alarm rate of 4.17%.
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1 INTRODUCTION

Indoor intrusion (someone enters the room without permission) detection plays a crucial role in home security such as
protecting assets and preventing personal attacks. A recent report in SafeAtLast [36] shows that there are 2.5 million
burglaries per year, and 66% of which are home break-ins, causing more than US$3.1 billion in damages every year. More
than 25% of those who interrupt burglars become victims of violent crimes. Homes without a security system have a 300%
more chance of getting broken into. The high incidence of home burglary demands effective intrusion detection in home
settings.

Video-based surveillance [7-10] has been widely used to detect intrusion in public places. However, video-based
approach may arise severe privacy concern when applied to a home setting. Additionally, video-based systems fail to detect
NLOS intrusion. Infrared-based approaches [11-14] have been well studied over a decade. However, these systems
typically have a limited sensing range since sensors are deployed in each typical entrance such as main entrance and
window. In addition, these sensors need to be properly installed by well-trained professionals due to the strict requirement
of sensor direction. Ultrasonic sensor approaches [33,34] may suffer the same problem.

Radar-based approaches [15-17] have been proposed in recent years. Although these approaches can achieve accurate
intrusion detection, they typically require expensive human efforts in offline training and radar hardware is usually costly,
hence limiting its applicability in home settings. For a cost-effective solution, WiFi devices have been used to build
intrusion detection systems. These approaches [2,18-22,26-29] share the same idea of extracting Receive Signal Strength
Indicator (RSSI) or Channel State Information (CSI) variation pattern and applying machine learning algorithms for pattern
matching. These approaches rely heavily on massive data for offline training. To overcome data dependency, studies in
[23,24] detect intrusion by comparing RSSI variance to specific threshold. However, RSSI variance varies significantly
with respect to distance, location and walking direction, hence setting an accurate threshold is not feasible. Li et al [30-32]
detect intrusion by identifying the transient moment of an intruder entering house with accurate estimation WiFi sensing
boundary. However, WiFi-based approaches requires the transmitter and receiver placed at two sides of an intruder, else
the performance declines significantly.

The audio devices embedded in smartphone have been used to detect intrusion by detecting door opening and closing
events [35]. Microphone array has been used to detect intrusion [1,3]. However, like radar- and WiFi-based approaches,
they rely heavily on massive data for offline training to cover all the possible conditions. Ultrasonic sensors also have been
used to build intrusion detection systems [33,34]. Due to strong directionality, ultrasonic sensors-based approaches suffer
the same problem as in the infrared-based approaches. Zieger et al [4] and Zu et al [38] proposed to extract various time
and domain features of the data received by microphone array to identify intrusion. However, the experience-based method
suffers from poor environment adaptation.

In this paper, we design and implement AudioGuard, an omnidirectional indoor intrusion detection system using only
a pair of speaker and microphone. The system is able to detect both LOS and NLOS intrusions. AudioGuard can be



implemented on different audio device and is robust against interference and transceiver’s location and orientation. \We
observe that there exist abundant acoustic reflections in an indoor environment, and intruder’s walking motion always
introduces a periodic Doppler shift. We hence discover our basic idea to capture intruder’s walking motion which is
inevitable during intrusion. By measuring the periodic Doppler shift embedded in echo signals, we can detect intrusion.
Designing and implementing such an omnidirectional intrusion detection system however entails two main challenges:

1) Different from the shift of main peak of echo spectrum as explained in the classical Doppler effect theory, due to
multipath reflections in indoor environments, the Doppler shift caused by walking motion appears as sidelobes of echo
spectrum without obvious peak. This raises a problem of how to quantify the Doppler shift.

2) Although limbs swing during walking is periodic, as the change of radial angle and the distance from intruder to
device, the Doppler shift over time embeds with nonlinear trend and its amplitude varies nonlinearly. It seriously decreases
the periodicity of Doppler shift and makes it difficult to distinguish intrusion and interference, e.g., curtain fluttering.

To address the aforementioned challenges, we first propose to capture Doppler shift using echo power spectrum density
(PSD) difference vector. We then propose a periodicity polarization method to cancel out the impact of the change of radial
angle and the distance on Doppler shift periodicity. Finally, we detect intrusion by measuring the periodicity of Doppler
shift sequence. The demo video is available at https://tinyurl.com/4y44pdbk or https://youtu.be/il-Pk4st750.

The main contributions of this paper are summarized as follows:

1) We design and implement AudioGuard, an omnidirectional intrusion detection system using only a pair of speaker
and microphone. It captures both LOS and NLOS intrusions. We propose to capture Doppler shift using PSD difference
vector and cancel out the impact of the change of radial angle and the distance on Doppler shift over time using a periodicity
polarization algorithm. It enlarges the Doppler shift periodicity difference between walking and other movement
interference.

2) We conduct extensive experiments to evaluate AudioGuard with a variety of indoor settings. Experiments show that
AudioGuard can be implemented on different audio device and robust against the variation of transceiver’s location and
orientation. AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively. The false
alarm rate under interference is 4.17%.

2 RELATED WORK

In this section, we briefly review the most relevant works in indoor intrusion detection which can be grouped into three
categories: video- and infrared-based approaches, RF-based approaches, and audio-based approaches.

2.1 Video- and Infrared-based Approaches

Video-based approaches [7-10] have been widely used to detect intrusion in public places. Cameras are installed to capture
images or video for intruder recognition. Compared with other intrusion detection approaches, video-based approaches can
detect intrusion, also retain full evidence. However, limited by visual angle, multiple cameras have to work together from
different positions to cover an entire room and it fails if intruder is in NLOS area. In addition, video-based approaches are
usually sensitive to light condition and may arise severe privacy concern when applied to home settings.

Infrared-based approaches [11-14] have been a mature intrusion detection solution for many years. These approaches
can be further grouped into two categories. The first category leverages pyroelectric infrared sensor to capture infrared
signals released by intruder. Limited by small sensing range, pyroelectric infrared sensors are usually deployed to monitor
the small area around entrance. The second category leverages directional infrared sensor to detect transient moment when
intruder block the line-of-sight between sender and receiver. To avoid underreporting, multiple sensors have to be deployed
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in every possible entrance, such as door and window, to form a wireless sensor network. In addition, due to strong
directionality, these sensors are required to be carefully installed by well-trained professionals. The complex deployment
may prevent these systems from large-scale deployment in home settings.

2.2 RF-based Approaches

Radar-based approaches [15-17] share the same basic idea of extracting various features from the Doppler effect caused
by walking, then detecting intrusion by matching feature variation pattern using machine learning algorithms. These
approaches rely heavily on massive data for offline training. In addition, expensive hardware prevents large-scale
deployment of these systems in home settings.

To build intrusion detection system friendly for home environment, researchers turn their attention to wide available
commercial WiFi devices. In the early stage of WiFi sensing, Receive Signal Strength Indicator (RSSI) has been explored
to detect intrusion [1,18-19,22-25,39]. The work [23,24] detect intrusion using a threshold to identify whether movement
occurs. These approaches are sensitive to movement interference (e.g., curtain fluttering). The work [1,18-19,22,25,39]
share same basic idea as radar-based approaches. They detect intrusion by extracting RSSI variation pattern from offline
RSSI data using machine learning algorithms. These approaches heavily rely on massive offline data and suffer from poor
environment adaptation ability.

Similarly, the work [2-4,20-21,26-29] detect intrusion by exacting the Channel State Information (CSI) variation pattern
from offline CSI data using different machine learning algorithms. These approaches suffer from similar problems as RSSI-
based and radar-based approaches. To overcome the limitations of the above approaches, Li et al. [30] propose to detect
intrusion using a relatively robust feature CSI ratio, i.e., the ratio between dynamic CSI component and static CSI
component. Furthermore, Li et al. [31] propose to detect intrusion by measuring Doppler shift embedded in CSI [40].
However, due to lack of mechanism to avoid interference, these two approaches are sensitive to movement interference
such as object falling and curtain fluttering. The approach in [32] accurately detects intrusion by identifying the transient
moment of an intruder entering a house with an accurate estimation of WiFi sensing boundary. Lin et al. [5] propose a CSI-
EIH model to describe the effect of moving object’s height to CSI amplitudes. Based on this model, the system can detect
intrusion and avoid false alarm caused by pets. However, the system may raise false alarms if moving object is higher than
the given height threshold. In addition to these shortcomings, CSl-based approaches have restriction on device location.
They require that transmitter and receiver placed at two sides of intruder, else the performance declines significantly.

2.3 Audio-based Approaches

Audio-based approaches have recently attracted researchers’ attention. Ultrasonic sensors are leveraged to build intrusion
detection systems [33,34]. Due to strong directionality, ultrasonic sensors-based approaches suffer the same problem as in
infrared-based approaches. Dissanayake et al [35] use the speaker and microphone embedded in smartphone to detect
intrusion by identifying door opening and closing events based on Doppler shift. However, it is sensitive to location and
orientation of smartphone because different location and orientation of smartphone may result in completely different
Doppler shift. In addition, like both radar- and RSSI-based approaches, it also heavily relies on massive data for offline
training. Microphone array has been used to detect intrusion [1,3]. However, these methods also heavily rely on massive
data for offline training to cover all the possible conditions. Zieger et al [4] and Zu et al [38] proposed to extract various
time and domain features of the data received by microphone array to identify intrusion. These approaches are all
experience-based approaches lacking explainable theory. It leads to poor environment adaptation ability.

Differently, in this paper, we design and implement AudioGuard, an omnidirectional indoor intrusion detection system



using only a pair of speaker and microphone. AudioGuard detects intrusion by fully leveraging abundant multipath

reflection in indoor environment to capture periodical Doppler shift caused by intruder’s walking. It is able to detect both
LOS and NLOS intrusions.

3 DOPPLER SHIFT CAUSED BY INTRUSION IN INDOOR ENVIRONMENT

3.1 Classical Doppler Effect

Doppler frequency shift is caused by relative movement between transmitter and receiver. In general, when a receiver
moves towards a signal source, the frequency of the received signal increases, and vice-versa. Mathematically, the
frequency of the received signal can be described as follows.

Jis M
¢+ v

where f' is the received frequency; f is the transmitted frequency; c is the velocity of the wave in propagation medium;
v, is the radial velocity of the receiver relative to the medium (positive if the receiver is moving towards the source and
negative otherwise); v, is the radial velocity of the source relative to the medium (positive if the source is moving away
from receiver and negative otherwise).

If the signal source and receiver are integrated to form an acoustic radar, then v, = v,. Plugging v = |v| - cos(8)
(v and 6 denote the walking speed of reflector and the angle between v and signal source, respectively) into Eq. 1, Doppler
frequency shift Af can be represented as:

AF = f7 _ 2|v| - cos(8) 5
f=r-r= ¢ F |v| - cos(6) f @
When v is much less than the velocity of sound ¢, we have ¢ ¥ vg = c. Af can be further simplified as:
2|v|cos(8)
Af = ———— ©)

The ideal model above assumes that the receiver only receives the signal reflected from the front of the moving reflector.
Thus, the Doppler shift appears as the peak shift echo spectrum. As shown in Figure 1, when the reflector moves towards
the transceiver with a speed of 1 m/s, the Doppler shift Af apears as the peak shift of 283.4 Hz (the frequency of
transmitting signal is 20 kHz and the sampling frequency is 48 kHz).
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Figure 1: Classical Doppler shift caused by moving reflector

3.2 Doppler Shift Caused by Walking in Spectrum



Comparing with human body, the reflection area of static environment is much larger. In another word, the power of the
multipath signal reflected from intruder is much lower than the power of the multipath signal reflected from the static
environment. However, only the signals reflected from the moving object embeds with Doppler shift. It results that rather
than changing the main peak of echo spectrum, the Doppler shift caused by intruder’s walking appears as sidelobes of echo
spectrum. Additionally, as shown in Figure 2(a), the change of the reflection path length of the signal reflected from the
front and the back of intruder are always opposite, so they always introduce opposite Doppler shift (positive Doppler shift
versus negative Doppler shift). Based above analysis we can finally derive that Doppler shift caused by walking always
appears as two different shapes of sidelobes at two sides of the main peak of echo. Figure 2(b) shows the PSDs of echo
(0.1 second) when intruder approaching and leaving the device (the frequency of transmitting signal is 20 kHz and the
sampling frequency is 48 kHz). So, how to quantify the Doppler shift caused by the walking is challenging.

We consider a scenario where there are two people in a room and they are out of the sight of each other. For example,
one is in bedroom and the other one is outside bedroom. One can still hear what the other says since the voice signals may
be reflected from the static environment and propagate through multipath. Similarly, due to abundant acoustic multipath
reflections in indoor environment, even the intruder is in NLOS areas, the microphone can still receive the signal indirectly
reflected from intruder, thus, the echo still embedded with Doppler shift caused by intruder’s walking.
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Figure 2: Comparing the frequency resolution of FFT and the proposed method

3.3 Periodicity of the Doppler Shift Caused by Walking over Time

Figure 3(a) shows the time-frequency spectrum of the echo when intruder is walking away from the device (as shown in
Figure 3(b)) and other interference (e.g., object falling, curtains fluttering, opening and closing door and chair sliding)
happen.

Walking away from the device j i : ir slidi Cliftdinifiuttering | i oM
I {

0
i ,)f;::,

-500
V: Moving velocity
1000 | Vi Radial velocity 1 .
0:Radial angle V&l 7S
20 4
Time (Second)

@ (b)

Figure 3: Time-frequency spectrum of the echo when walking and other disturbance events happen.

From Figure 3(a), we observe that due to the periodic limbs swing during walking, the Doppler shift caused by walking



shows some periodicity, while Doppler shift caused by interference is aperiodic. So, our insight to detect intrusion is
capturing the periodic Doppler shift sequence over time. However, from Figure 3(a) we also observe that the Doppler shift
varies nonlinearly over time as radial angle and the distance varies during walking (shown in Figure 3(b)). Except for last
two steps before stop, when the intruder is close to the device, the Doppler shift appears as low frequency shift but high
power. When the intruder is far from the device, the Doppler shift appears as high frequency shift but low power. As shown
in Figure 3(b), it is caused by the fact that when intruder is close to the device, the energy of the signal reflected from
intruder is relative larger, while large radial angle leads to small radial velocity finally resulting in low frequency shift.
When intruder is far from the device, the energy of the signal reflected from intruder is low, while small radial angle makes
large radial velocity finally resulting in high frequency shift. So, how to cancel out the impact of radial angle and distance
variation on the periodicity of Doppler shift is challenging.

4 SYSTEM DESIGN AND IMPLEMENTATION

4.1 System Framework

As shown in Figure 4, AudioGuard has three modules, namely Doppler effect extraction module, periodicity polarization
module and intrusion detection module. The Doppler effect extraction module extracts Doppler shift using PSD difference
vector. Periodicity polarization module firstly retains the segments that contain moving events, then polarizes the
periodicity of the Doppler shift sequence. Intrusion detection module detects intrusion by measuring the periodicity of
Doppler shift sequence over time.
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Figure 4: System framework.

4.2 Doppler Shift Extraction

AudioGuard continuously transmits a 20 kHz single frequency acoustic signal, which is inaudible for human, through a
player. The microphone receives the echo synchronously with the sampling rate f; = 48 kHz. The length of the received
frame is 0.1 second. To remove environment noise in echo, a band pass filter is adapted. Since the maximum walking
velocity of human is approximately 4.3 m/s, according to Doppler shift formula [41], the maximum Doppler shift caused
by intruder walking is about 500Hz. Therefore, the pass band of the filter is set as [f. — 500, f. + 500].

As mentioned in Section 3, Doppler shift caused by intruder’s walking motion appears as two different shapes of
sidelobes at two sides of the main peak of echo spectrum. Traditional method, i.e., extracting main peak shift of PSD of
echo, cannot be applied to capture Doppler shift under this condition. In this paper we capture Doppler shift using PSD
difference vector.

PSD can be estimated using the Welch algorithm [6], which can significantly improve the variance characteristics of
the power spectrum via overlap mechanism, also effectively reduce spectrum leakage via window function. Specifically,
the PSD of one echo frame x,.(n) is estimated as:
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where wy is the digital angular frequency, which is defined as w, = kAw = 2mwk/N.L is the number of overlapped
segments. N is the length of each segment. M is the hop size. w is a window function with a length of N. As
aforementioned, Doppler effect caused by walking appears at frequency band f, — 500 < f;, < f, + 500. According to
the relationship between physical frequency f; and digital angular frequency wy i.e., w, = 27f./fs, where f; is the
sampling frequency, we can obtain the range of w,

2n(fc]g 500) o < 27T(fc];: 500) ©

n

Plugging w, = kAw = 2mk/N into Eq. 5, we obtain the range of k

N(f.=500) _ _ N(f +500)

fs fs

The minimum and maximum of k is

;kH=
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Then, PSD difference vector of the echo frame at time ¢; is defined as:
PD; = (dif fi, dif fi, ., dif fi ,.c,dipp, )l < kg < < ky (6)
where dif f is defined as:
diffi. = Pi(wy,,) = Prer(wk,,) @)

P; denotes the PSD of the echo frame at time ¢; (refer to Eq. 4). P,y denotes the reference PSD, which is the average PSD
of the echo collected from current environment without any movement event. Every time when AudioGuard starting, it
firstly runs the initializer to obtain reference PSD of current environment. Specifically, initializer continuously estimates
echo PSD for 20 seconds, then calculates the average PSD value as reference PSD. During this process, any movement
event is forbidden. If movement happens during getting reference PSD, the initializer automatically repeats getting
reference PSD. Specifically, if the PSDs show obvious fluctuation, which can be easily observed from the variances of
points in PSD over time, initializer runs again.
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Figure 5: Reference PSDs over five days



We randomly record 20 seconds to get reference PSD for five days in same room without movement interference. Fig
5 shows the recorded reference PSD of each day. It can be observed that the reference PSDs are very similar. It indicates
that if the environment does not change, we only need to get reference PSD for only one time.
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Figure 6: PSD difference vector.

Figure 6 (a) show the reference PSD and the PSD of one echo frame when there is ho moving object. Figure 6 (b) shows
the PSD difference vector derived from Figure 6 (a). Figure 6 (c) show the reference PSD and the PSD of one echo frame
when one subject is walking. Figure 6 (d) shows the PSD difference vector derived from Figure 6 (c). Figure 7 shows all
the samples of PSD difference vectors during one walking event containing seven steps. Even though during walking, the
limbs swing is periodic, PSD difference vectors during walking do not show obvious periodicity. It is consistent with our
analysis in Sec. 3.3.
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Figure 7: Samples of PSD difference vector during a walking event.

Finally, we quantify Doppler shift of the echo frame at time ¢; as the first normal form of PD;, i.e.,

H

d; = IPDill = ) |diffi,

j=1
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4.3 Periodicity Polarization

Due to abundant acoustic multipath reflection in room environment, almost all the movement events (e.g., walking, door
opening and closing, object falling, object sliding, and curtain fluttering) will introduce Doppler shift in echo. We have to
firstly identify all the movement events, then identify intrusion among these movement events. According to Eqg. 8,
compare with the condition there is no moving object, when moving event happens, the value of d; will be obviously larger
due to Doppler shift. So, we can simply truncate the segments containing movement using a threshold. Specifically, to
avoid the interference caused by system jitter, if d; is larger than the threshold for 3 times continuously, we start to record
d;. Similarly, if d; is smaller than the threshold for 3 times continuously, we stop to record d;. Thus, each movement event
can be segmented out and d; over time is recorded. We call the recorded d; over time as Doppler shift sequence. Figure 8
shows the Doppler shift sequence of different movement events.

We observe that the Doppler shift sequences caused by curtain fluttering and object sliding are aperiodic. Even though
walking is periodic, Doppler shift sequence caused by walking (shown in Figure 8 (c)) shows weak periodicity. It is caused
by the change of radial angle and the distance from intruder to device during walking (refer to Sec. 3.2). Too weak
periodicity of Doppler shift sequence caused by walking will result in intrusion detection error. In order to improve
intrusion detection accuracy, we intend to enhance the Doppler shift with weak periodicity while keep the periodicity of
aperiodic Doppler shift sequence. In other words, we enlarge the periodicity difference between weak periodic Doppler
shift sequence and aperiodic Doppler shift sequence. Thus, the intrusion can be easily detected as the Doppler shift
sequence with strong periodicity.
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Figure 8: Doppler shift sequence of different movement events. (a) Curtain fluttering. (b) Object sliding. (c) Walking.

It’s well known that strong periodicity simultaneously requires: 1) the shapes of the sequence during all periods are
similar, and 2) the length of all the periods is almost constant. If any one of the requirements is not met, the signal will
show weak even no periodicity. From Figure 6, we clearly see that, Doppler shift sequence caused by walking only meet
the first requirement, while Doppler shift sequences caused by other aperiodic movement do not meet both two
requirements. If we can enhance the similarity of sequence shape during each period while keep the length of original
periods, Doppler shift sequence caused by walking will then meet both two requirements, while Doppler shift sequences
caused by other aperiodic movement only meet the first requirement. Thus, the periodicity of Doppler shift sequence caused
by walking will be significantly enhanced while the periodicity of Doppler shift sequence caused by other aperiodic
movement will not be enhanced.

Periodicity polarization is designed to eliminate the difference of fluctuation amplitude in each period. Specifically,
periodicity polarization process is composed of detrending, smoothing and amplitude normalization. Firstly, we extract the
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polynomial trend of Doppler shift sequence and subtract it from Doppler shift sequence. Then, we smooth the detrended
Doppler shift sequence to eliminate small burrs. Finally, we normalize the amplitude of Doppler shift sequence by eliminate
the envelop of the sequence using Hilbert transform [37]. For detrended and smoothed Doppler shift sequence d =
dy, dy, ...d;, ..., discrete Hilbert transform can be calculated by leveraging Discrete Fourier Transform (DFT) and Inverse
Discrete Fourier Transform (IDFT).

d = IDFT(D) )

where D is defined as:

1,2,..,N/2 —1,when N is even
1,2,..,(N—1)/2,when N is odd
N/2+1,..,N—1,when N is even
(N+1)/2,..,N—1,when N is odd

A _iD(), k = {
D) = (10)

iD(k), k = {

where D = DFT(d). With d, the envelope of d, i.e., the amplitude of d over time can be calculated as

A(n) = /d(n)2 +d(n)? (11)

d
d'(n) = % (12)

We then normalize d as

A A AN / ‘ AL ANVAVY\VA .
or/ \/m\/ \/ \,/\\//\\\fv ’rA\//\\\‘f\J/\‘/\/A\V/ \VJ / \\/ \\/ \j/ ‘y’\ \\,’/ — B

“o 1 2 3 4 s 6
Time(s)

1
Y 0.7259
05¢ | /YDKQQA A
\ N
\WARIA
M
|
| \

Y0.2774 Y 0.1876

Y0.133

Y 0.1239 |
B 7\

Autocorrelation

Lag (s)
(a) Walking (b) Curtain fluttering (b) Object sliding (d) Object falling () Opening or closing door
Figure 9: Periodic polarization of the Doppler shift sequence of different moving events.

The subfigures in first line of Figure 9 show the original Doppler shift sequences (blue line) and the Doppler shift
sequences after periodicity polarization (red line) of different moving events. Subfigures in second line of Figure 9 show
the corresponding autocorrelations. Higher peak of the autocorrelation function means stronger periodicity. Comparing the
autocorrelation of original Doppler shift sequences and that of the Doppler shift sequences after periodicity polarization,
we can see that the periodicity of Doppler shift sequence of walking is significantly enhanced while the periodicities of
other Doppler shift sequences are not enhanced obviously. It indicates that periodicity polarization is able to enlarge the
periodicity difference between weak periodic Doppler shift sequence and aperiodic Doppler shift sequence.
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4.4 Intrusion Detection

After periodicity polarization, intrusion can be easily detected as the Doppler shift sequence with strong periodicity. We
measure the periodicity of Doppler shift sequence using autocorrelation function. The autocorrelation of the Doppler shift
sequence after periodicity polarization d’ is given by:

Ck

Ry (k) = % (13)

where ¢, is the auto-covariance of §;,
N-k
1 - _
o=y ) (@) -@) @@+~ ), k=01,..,N-1 (14)
n=1

From Figure 8, we observe that the autocorrelation function of periodic Doppler shift sequence looks like a sinusoid,
but its amplitude decreases gradually, while the autocorrelation function of aperiodic Doppler shift sequence varies
irregularly. Based on this characteristic, the rules are built as follows to judge whether intrusion happens. Suppose the
coordinate value of first three peaks of the autocorrelation are (py,l1), (p2, 1), (ps3,l3), respectively, then the peak
intervals are Pkintevs = [l;, 1, — 14, I3 — 1,]. If the following rules are satisfied, we judge intrusion happening.

p1 > PkThrd,and p; > p, > ps, and
max(PkIntvs) — min(PkIntvs)

> IntvThrd
mean(PkIntvs) neviar

The first rule is designed to ensure that the shapes of the Doppler shift sequence within all periods are similar enough.
The second rule ensures the lengths of all the periods are almost constant. The combination of the above two rules ensures
that the detected Doppler shift is strong periodic. According to the experimental results in Sec 5.6 the threshold PkThrd
and Pkintvs are suggested to set as 0.3~0.4 and 0.1~0.2, respectively.

5 EVALUATION

In this section, we conduct comprehensive experiments to evaluate AudioGuard. Firstly, we evaluate AudioGuard with
LOS intrusion in office, laboratory, and home environment. We then test the performance for NLOS intrusion detection
with 5 different settings in a real home environment. Finally, we evaluate its robustness. We test the impact of different
transceivers, the variation of transceiver’s location and orientation, different walking speed and various interference.

Finally, we discuss the limitations of AudioGuard. The demo video of AudioGuard is available at
https://tinyurl.com/4y44pdbk and https://youtu.be/il-Pk4st750.

5.1 Prototype Implementation

We implement AudioGuard on two different acoustic transceivers shown in Figure 10. Two transceivers have same
commercial microphone (SAMSON MeteorMic, 16 bit, 48 kHz, 96 dB, 20Hz~20 kHz ) but different speakers. The speaker
in transceiver 1 is a commercial speaker (JBL Jembe, 6 Watt, 80 dB, 80Hz~20 kHz), while the speaker in transceiver 2 is
a customized speaker (50 Watt, 96 dB, 1 kHz~40 kHz). We use transceiver 2 by default and compare the sensing range of
transceiver 1 and transceiver 2 in Sec. 5.4.1. The acoustic transceiver is connected to a Lenovo laptop (Intel (R) Core (TM)
i7-7500UCPU, 8GB RAM). The intrusion detection algorithm is implemented in MATLAB and runs in real-time. The
frequency of transmitted signal is 20 kHz. The length of echo frame is 0.1 second.
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Transceiver 1 Transceiver 2
Figure 10: Two different transceivers

5.2 Evaluation for LOS Intrusion

As shown in Figure 11, we conduct LOS intrusion detection experiment in three different rooms, i.e., office (5.2m>3m),
laboratory (8.4m>5.8m), and home (irregular shape, 148 m?). In each environment, four subjects are recruited to enter the
room or walk freely in the room for at least 100 times to test the miss report rate (i.e., False Negative Rate, FNR). Note
that in the home setting, i.e., the third setting, to ensure the intrusion is in LOS, the subjects are required to walk in the
areas highlighted as yellow.

N

Figure 11: LOS intrusion evaluation in three different rooms

Table 1: Experimental Result of LOS Intrusion Detection

Room Number of experiments Number of miss report Miss report rate

Office 105 0 0%
Laboratory 121 0 0%

Home 110 0 0%

Table 1 shows the experimental result. We can see that AudioGuard accurately captures all the intrusion. Because there
iS no restriction on subjects’ walking path, subjects change walking path dynamically during walking in part of the
experiments. So, the result also indicates that within its sensing range (more than 120 m?, refer to Sec. 5.5) AudioGuard is
robust to intruder’s location and walking direction.

5.3 Evaluation with NLOS Intrusion

We conduct NLOS intrusion detection experiment in a real home environment. Figure 12 shows the settings. The red
circles mark the location of the transceiver. The areas highlighted as yellow are the places where intrusion happens. The
settings ensure that the intrusion happens in NLOS area for transceiver.

In each setting, three subjects are recruited to walk in the yellow area freely for at least 100 times to test the miss report
rate. Table 2 shows the experimental result. We can see that in first four settings AudioGuard can accurately capture
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intrusions. However, in setting 5, AudioGuard fails because of the lack of effective reflected signal (i.e., the received
multipath signal reflected from intruder). Similar results occur if the door is closed in settings 1, 2 and 4. In other words,
if the effective reflected signal is blocked (e.g., door is closed) or the propagation path is too complex requiring too many
times of reflection (e.g., setting 5), AudioGuard fails to detect intrusion.

Figure 12: NLOS intrusion evaluation settings

Table 2: Experimental Result of NLOS Intrusion Detection

Setting Num. Number of experiments Number of miss report Muiss report rate
1 105 1 0.95%
2 121 2 1.65%
3 110 0 0
4 114 2 1.75%
5 100 87 87%

5.4 Robustness Evaluation

5.4.1 Impact of Different Transceiver

The sensing range is related to transmitting power. In the same environment, larger transmitting power results in larger
sensing range. We conduct experiments in a laboratory (8.4m>6m>3.4m) and a large lobby (38m>8m>9m) to compare the
sensing range of two different transceiver mentioned in Sec. 5.1. Specifically, as shown in Figure 13(a) and Figure 13(b),
we divide the space of laboratory and lobby into 11 m? squares. To make full use of the space we firstly place the
transceiver at one corner of the laboratory and lobby to measure the sensing range in front of the transceiver. Two subjects
are asked to walk away from the transceiver at each square. The blue arrows and the dots in Figure 13(a), (b) denote the
walking direction and the start point of walking. The red circles linked with arrow denote the location and orientation of
transceiver in Figure 13 (a) ~ (f). If AudioGuard successfully detects the walking events, the square where the subject starts
walking from is detectable, else the square is undetectable. To estimate the detectable area in the back of transceiver, the
transceiver is placed facing towards the wall and the subject walk in the area in the back of transceiver.

The sensing range of transceiver 1 in the laboratory and lobby are shown in Figure 13(c) and Figure 13(d). The sensing
range of transceiver 2 are shown in Figure 13(e) and Figure 13(f). The squares colored as green denote that AudioGuard
successfully captures the walking events of both two subjects in these squares. The squares colored as yellow denote that
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AudioGuard only captures the walking event of one subject and fails to detect the walking event of another subject in these
squares. The squares colored as red denote that AudioGuard fails to capture the walking events of both two subjects in
these squares.

We observe some interesting phenomena. Firstly, the sensing range of transceiver 2 is larger than that of transceiver 1,
especially the sensing range in lobby. It reasonable that larger transmitting power of the transceiver result in larger sensing
range. Secondly, comparing the sensing range of transceiver 1 in laboratory and lobby (as shown in Figure 13(c) and Figure
13(d)), we find that the space of the lobby is much larger than that of the laboratory, but the detectable area in the laboratory
is larger than that in the lobby. However, the detectable area of transceiver 2 in the lobby (as shown in Figure 13(f)) is
larger than that in the laboratory (as shown in Figure 13(e)). It indicates that the sensing range is related to both the
transmitting power and the space of the environment. Larger rooms may have weaker multipath reflection and finally
results in smaller sensing range.
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Figure 13: Sensing range of different transceiver in different environment

5.4.2 Impact of NLOS distance

From the experimental results in Sec 5.3, we know that the detectability of NLOS intrusion depends on the complexity of
signal propagation path, which is closely related to NLOS distance (i.e., the distance along wall which blocks LOS between
transceiver and intruder). In this section, we evaluate the impact of NLOS distance on intrusion detecting accuracy.
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Specifically, the evaluation environment is shown in Figure 14(a). Two adjoining rooms (6m>3m) are connected by a door.
The transceiver is placed in one room and the intrusion happens in the other room. The black arrows denote five walking
paths that has different distance from the wall, 1 ~5 m. For each path, the one subject is recruited to walk 50 times. Figure
14(b) shows the miss report rates when subject walks along different paths. When the distance is larger than 3 m, the miss
report rate increases significantly. Though increasing transmitting power may mitigate this problem, as NLOS distance
increases, failing to detect intrusion is inevitable.
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(a) Experimental settings (b)Miss report rate of each path
Figurel4. Impact of NLOS distance

Miss Rate

5.4.3 Impact of The Location and Walking Direction of Intruder

Adapting to the variation of intruder’s location and walking direction is necessary for intrusion detection in real application
environment. We now conduct experiments to test the impact of the location and walking direction of intruder on intrusion
detection. As shown in Figure 15 (a), we divide the room (10m x8m > 3.4m) into 8 areas with different shapes. The
transceiver is placed at the center facing left (highlighted as the yellow circle with an arrow). 15 participants (including 5
females and 10 males) are recruited to walk in each area towards nine different directions (direction 9 is clockwise circle)
to test the missing report rate. Each subject walks for two times towards each direction in each area. From the layout of
the areas, areas 1 and 3, areas 7 and 5, areas 8 and 4 are all symmetric, respectively. So, we only need to test AudioGuard
inthe areas 1, 2, 6, 7 and 8.
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Figure 15: Evaluation with Various Location and Walking Direction of Intruder

We summarize the experimental results from two aspects. Figure 15(b) shows the missing report rate in each area. We
observe that except for area 6, the missing report rates of other areas are lower than 5%. The missing report rates of area 6
is slightly higher because area 6 is directly behind the transceiver. From the result of experiments in Sec. 5.4.2, the
detectable area behind the transceiver is smaller than other orientations. In other words, the detectability of area 6 is
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relatively lower than other areas. Figure 15(c) shows the statistics of missing report rate of each direction. We see that all
the missing report rates are lower than 4%. In summary, the results indicate that AudioGuard is robust against intruder’s
location and walking direction.

5.4.4 Impact of The Location and Orientation of Transceiver

Robustness to the variation of transceiver’s location and orientation is important for practical application. We place the
transceiver randomly to test the missing report rate.
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(a) Location and orientation of transceiver in each experiment.  (b) Miss report rate of each experiment.
Figure 16: Evaluation with Various Location and Orientation of Transceiver

Figure 16(a) shows the transceiver’s location and orientation in 8 experiments. In each experiment, 3 subjects are
recruited to enter the room or walk freely in the room (8.4m>&5.8m). Figure 16(b) shows the miss report rate in each
experiment. We observe that the miss report rates are all lower than 4%. It indicates that AudioGuard is robust against the

variation of transceiver’s location and orientation.

5.4.5 Impact of Walking Speed

Different people have different walking speed. It’s necessary to test the robustness against different speed. 5 subjects are
recruited to evaluate the miss report rate of AudioGuard. Subjects are required to walk at four speed levels: 0.5~0.8 m/s,
0.8~1.2 m/s, 1.5~2 m/s and 2~3 m/s. There is no restriction for walking path. The experimental result is shown in Figure
17. We observe that there is no miss report when the walking speed is lower than 1.2 m/s, which is a normal walking speed.
When walking fast, i.e., the speed reaches 1.5 ~ 2 m/s, the miss report rate is still lower than 10%. When running, i.e., the
speed reaches 2 ~ 3 m/s, the miss report rate increases significantly. It is reasonable that when running the stride frequency
is about 2 ~ 4 steps per second, i.e., 2 ~ 4 Hz. As mentioned in Sec. 4.2, the length of the received echo frame is 0.1 second.
It means that the sampling rate of Doppler shift is 1/0.1 = 10 Hz, which is too low to clearly depict the periodicity of
Doppler shift sequence caused by running. Thus, when running, the miss report rate increases significantly.
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Figure 17: Effect of walking speed
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5.4.6 Impact of Interference

We now conduct experiment to test the robustness against noise interference (talking, knocking door, playing music) and
movement interference (opening or closing door and window, object falling, curtain fluttering).

As shown in Table 3, there are 6 different interferences, and each interference is repeated for 20 times. Totally 120
times interference randomly mixed with an equal number of walking are used to test both the miss report rate and false
alarm rate (i.e., False Positive Rate, FPR). Figure 18 shows the confusion matrix.

Table 3: Interference

Interference Number of experiments
Talking 20
Knocking door 20
Playing music 20
Opening or closing door and window 20
Object falling 20
Curtain fluttering 20
Confusion Matrix
gl 115
55| 47.9% 0.0%
ok
S| s 120
E 21% 50.0%
Insrusion Interference
Target Class

Figure 18: Confusion matrix

5.4.7 Impact of Key Thresholds

We now evaluate the impact of two key thresholds, i.e., kThrd and Pkintvs (refer to Sec. 4.4) on miss report rate and
false alarm rate. We know that common ambient noise cannot incur false alarming as they do not incur Doppler shift. So,
in this experimental, we only add three kind of movement events (including opening or closing door and window, object
falling and curtain fluttering) as interference. Specifically, intrusion and movement interference randomly happen for 100
times and 60 times respectively. Figure 19 (a) shows the ROC curve when PkIntvs = 0.1 and kT hrd varies from 0.1 to
0.6 with a step of 0.1. Figure 19 (a) shows the ROC curve when kThrd = 0.3 and PkIntvs varies from 0 to 0.2 with a
step of 0.05. According to above results, PkThrd and PkIntvs are suggested to set as 0.3~0.4 and 0.1~0.2, respectively.
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Figure 19: Impact of two key thresholds, PkThrd and Pkintvs
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5.5 Consuming Time Evaluation

In this section, we conduct an experiment to test the computational overhead of AudioGuard. As presented in Sec. 4.2, the
length of the received audio frame by the microphone is 0.1 second. The iteration cycle of AudioGuard is equal to the
length of audio frame. To ensure AudioGuard runs in real time, the consuming time of signal processing have to be shorter
than 0.1 second, else frame drop occurs. We test the consuming time of the signal processing of AudioGuard under three
different settings: 1) no any movement happens, 2) movement interference happens, 3) intrusion happens. For each setting,
AudioGuard iterates for 1000 times and we record the consuming time. Table 4 shows the statistics of the consuming time
under three settings. We observe that the maximums of consuming time of signal processing under three settings are all
smaller than 0.049 second, which is far less than the upper bound 0.1 second.

Table 4: System run-time and latency

Number of Iterations Mean Variance  Minimum  Maximum
No any movement 1000 0.027 0.000 0.025 0.036
Movement interference happens 1000 0.027 0.000 0.025 0.041
Intrusion happens 1000 0.028 0.003 0.026 0.049

5.6 Discuss

We now discussion limitations in the current implementation.

1) AudioGuard can only detect the intrusion caused by single intruder. It cannot detect intrusion caused by multiple
intruders. AudioGuard detects intrusion by measuring the periodicity of Doppler shift. When multiple intruders walk
simultaneously, their different stride frequencies (non-multiple) incur aperiodic Doppler shift, which will be regarded as
interference by AudioGuard. A promising way to tackle this problem is decomposing Doppler shift sequence using the
method such as time-frequency domain analysis and independent component analysis (ICA).

2) AudioGuard is sensitive to periodical movement interference. As mentioned in Sec. 3.3, the basic idea of
AudioGuard is to capture the periodical Doppler shift sequence, when periodical movement interference happens,
AudioGuard may experience false alarms. It is worth noting that the periodical sound interference (such as the sound of
knocking door, the sound of footsteps outside the room, the sound of periodical music, etc.) will not result in false alarm.
Because pure sound will not introduce Doppler shift. To avoid periodical movement interferences, other features of
Doppler shift need to be extracted to distinguish the category of moving object.

3) AudioGuard may miss the intrusion when intruder is running. As mentioned in Sec. 5.4.5, running will blur the
periodicity of Doppler shift sequence, which may finally lead to miss report.

4) AudioGuard may miss the intrusion in NLOS condition if the reflected signal is seriously blocked. As mentioned
in Sec. 5.3, if the reflected signal is completely blocked by door, AudioGuard fails. Additionally, if the propagation path
between the area where the transceiver locates and the area where the intruder locates is too complex requiring too many
times of reflection, AudioGuard fails. This problem may be solved by exploiting room Channel Impulse Response (CIR)
estimation, which is able to quantify both the time delay and amplitude attenuation of the multipath signals. CIR is more
sensitive to movement than Doppler effect in indoor environment.
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