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Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer from the problems such as blind 

spots in non-line-of-sight (NLOS) areas, restricted device locations, massive offline training required, and privacy concern. In this paper, 

we design and implement an omnidirectional indoor intrusion detection system, named AudioGuard, using only a pair of speaker and 

microphone. AudioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal propagation 

in an indoor environment shows that there exist abundant multipath reflections and human movement introduces Doppler shift in echo 

signals. We hence capture periodical Doppler shift caused by intruder’s walking motion to detect intrusion. Specifically, we first extract 

the Doppler shift embedded in echo signals, we then propose a periodicity polarization method to cancel out the impact of the change of 

radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring periodicity of Doppler shift over 

time. Extensive experiments show that AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, 

respectively, and a false alarm rate of 4.17%. 
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1 INTRODUCTION 

Indoor intrusion (someone enters the room without permission) detection plays a crucial role in home security such as 

protecting assets and preventing personal attacks. A recent report in SafeAtLast [36] shows that there are 2.5 million 

burglaries per year, and 66% of which are home break-ins, causing more than US$3.1 billion in damages every year. More 

than 25% of those who interrupt burglars become victims of violent crimes. Homes without a security system have a 300% 

more chance of getting broken into. The high incidence of home burglary demands effective intrusion detection in home 

settings. 

Video-based surveillance [7-10] has been widely used to detect intrusion in public places. However, video-based 

approach may arise severe privacy concern when applied to a home setting. Additionally, video-based systems fail to detect 

NLOS intrusion. Infrared-based approaches [11-14] have been well studied over a decade. However, these systems 

typically have a limited sensing range since sensors are deployed in each typical entrance such as main entrance and 

window. In addition, these sensors need to be properly installed by well-trained professionals due to the strict requirement 

of sensor direction. Ultrasonic sensor approaches [33,34] may suffer the same problem. 

Radar-based approaches [15-17] have been proposed in recent years. Although these approaches can achieve accurate 

intrusion detection, they typically require expensive human efforts in offline training and radar hardware is usually costly, 

hence limiting its applicability in home settings. For a cost-effective solution, WiFi devices have been used to build 

intrusion detection systems. These approaches [2,18-22,26-29] share the same idea of extracting Receive Signal Strength 

Indicator (RSSI) or Channel State Information (CSI) variation pattern and applying machine learning algorithms for pattern 

matching. These approaches rely heavily on massive data for offline training. To overcome data dependency, studies in 

[23,24] detect intrusion by comparing RSSI variance to specific threshold. However, RSSI variance varies significantly 

with respect to distance, location and walking direction, hence setting an accurate threshold is not feasible. Li et al [30-32] 

detect intrusion by identifying the transient moment of an intruder entering house with accurate estimation WiFi sensing 

boundary. However, WiFi-based approaches requires the transmitter and receiver placed at two sides of an intruder, else 

the performance declines significantly. 

The audio devices embedded in smartphone have been used to detect intrusion by detecting door opening and closing 

events [35]. Microphone array has been used to detect intrusion [1,3]. However, like radar- and WiFi-based approaches, 

they rely heavily on massive data for offline training to cover all the possible conditions. Ultrasonic sensors also have been 

used to build intrusion detection systems [33,34]. Due to strong directionality, ultrasonic sensors-based approaches suffer 

the same problem as in the infrared-based approaches. Zieger et al [4] and Zu et al [38] proposed to extract various time 

and domain features of the data received by microphone array to identify intrusion. However, the experience-based method 

suffers from poor environment adaptation. 

In this paper, we design and implement AudioGuard, an omnidirectional indoor intrusion detection system using only 

a pair of speaker and microphone. The system is able to detect both LOS and NLOS intrusions. AudioGuard can be 
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implemented on different audio device and is robust against interference and transceiver’s location and orientation. We 

observe that there exist abundant acoustic reflections in an indoor environment, and intruder’s walking motion always 

introduces a periodic Doppler shift. We hence discover our basic idea to capture intruder’s walking motion which is 

inevitable during intrusion. By measuring the periodic Doppler shift embedded in echo signals, we can detect intrusion. 

Designing and implementing such an omnidirectional intrusion detection system however entails two main challenges:  

1) Different from the shift of main peak of echo spectrum as explained in the classical Doppler effect theory, due to 

multipath reflections in indoor environments, the Doppler shift caused by walking motion appears as sidelobes of echo 

spectrum without obvious peak. This raises a problem of how to quantify the Doppler shift.  

2) Although limbs swing during walking is periodic, as the change of radial angle and the distance from intruder to 

device, the Doppler shift over time embeds with nonlinear trend and its amplitude varies nonlinearly. It seriously decreases 

the periodicity of Doppler shift and makes it difficult to distinguish intrusion and interference, e.g., curtain fluttering.  

To address the aforementioned challenges, we first propose to capture Doppler shift using echo power spectrum density 

(PSD) difference vector. We then propose a periodicity polarization method to cancel out the impact of the change of radial 

angle and the distance on Doppler shift periodicity. Finally, we detect intrusion by measuring the periodicity of Doppler 

shift sequence. The demo video is available at https://tinyurl.com/4y44pdbk or https://youtu.be/iI-Pk4st75o. 

The main contributions of this paper are summarized as follows: 

1) We design and implement AudioGuard, an omnidirectional intrusion detection system using only a pair of speaker 

and microphone. It captures both LOS and NLOS intrusions. We propose to capture Doppler shift using PSD difference 

vector and cancel out the impact of the change of radial angle and the distance on Doppler shift over time using a periodicity 

polarization algorithm. It enlarges the Doppler shift periodicity difference between walking and other movement 

interference. 

2) We conduct extensive experiments to evaluate AudioGuard with a variety of indoor settings. Experiments show that 

AudioGuard can be implemented on different audio device and robust against the variation of transceiver’s location and 

orientation. AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively. The false 

alarm rate under interference is 4.17%.  

2 RELATED WORK 

In this section, we briefly review the most relevant works in indoor intrusion detection which can be grouped into three 

categories: video- and infrared-based approaches, RF-based approaches, and audio-based approaches.  

2.1 Video- and Infrared-based Approaches 

Video-based approaches [7-10] have been widely used to detect intrusion in public places. Cameras are installed to capture 

images or video for intruder recognition. Compared with other intrusion detection approaches, video-based approaches can 

detect intrusion, also retain full evidence. However, limited by visual angle, multiple cameras have to work together from 

different positions to cover an entire room and it fails if intruder is in NLOS area. In addition, video-based approaches are 

usually sensitive to light condition and may arise severe privacy concern when applied to home settings.  

Infrared-based approaches [11-14] have been a mature intrusion detection solution for many years. These approaches 

can be further grouped into two categories. The first category leverages pyroelectric infrared sensor to capture infrared 

signals released by intruder. Limited by small sensing range, pyroelectric infrared sensors are usually deployed to monitor 

the small area around entrance. The second category leverages directional infrared sensor to detect transient moment when 

intruder block the line-of-sight between sender and receiver. To avoid underreporting, multiple sensors have to be deployed 

https://tinyurl.com/4y44pdbk
https://youtu.be/iI-Pk4st75o
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in every possible entrance, such as door and window, to form a wireless sensor network. In addition, due to strong 

directionality, these sensors are required to be carefully installed by well-trained professionals. The complex deployment 

may prevent these systems from large-scale deployment in home settings. 

2.2 RF-based Approaches 

Radar-based approaches [15-17] share the same basic idea of extracting various features from the Doppler effect caused 

by walking, then detecting intrusion by matching feature variation pattern using machine learning algorithms. These 

approaches rely heavily on massive data for offline training. In addition, expensive hardware prevents large-scale 

deployment of these systems in home settings. 

To build intrusion detection system friendly for home environment, researchers turn their attention to wide available 

commercial WiFi devices. In the early stage of WiFi sensing, Receive Signal Strength Indicator (RSSI) has been explored 

to detect intrusion [1,18-19,22-25,39]. The work [23,24] detect intrusion using a threshold to identify whether movement 

occurs. These approaches are sensitive to movement interference (e.g., curtain fluttering). The work [1,18-19,22,25,39] 

share same basic idea as radar-based approaches. They detect intrusion by extracting RSSI variation pattern from offline 

RSSI data using machine learning algorithms. These approaches heavily rely on massive offline data and suffer from poor 

environment adaptation ability.  

Similarly, the work [2-4,20-21,26-29] detect intrusion by exacting the Channel State Information (CSI) variation pattern 

from offline CSI data using different machine learning algorithms. These approaches suffer from similar problems as RSSI-

based and radar-based approaches. To overcome the limitations of the above approaches, Li et al. [30] propose to detect 

intrusion using a relatively robust feature CSI ratio, i.e., the ratio between dynamic CSI component and static CSI 

component. Furthermore, Li et al. [31] propose to detect intrusion by measuring Doppler shift embedded in CSI [40].  

However, due to lack of mechanism to avoid interference, these two approaches are sensitive to movement interference 

such as object falling and curtain fluttering. The approach in [32] accurately detects intrusion by identifying the transient 

moment of an intruder entering a house with an accurate estimation of WiFi sensing boundary. Lin et al. [5] propose a CSI-

EIH model to describe the effect of moving object’s height to CSI amplitudes. Based on this model, the system can detect 

intrusion and avoid false alarm caused by pets. However, the system may raise false alarms if moving object is higher than 

the given height threshold. In addition to these shortcomings, CSI-based approaches have restriction on device location. 

They require that transmitter and receiver placed at two sides of intruder, else the performance declines significantly.  

2.3 Audio-based Approaches 

Audio-based approaches have recently attracted researchers’ attention. Ultrasonic sensors are leveraged to build intrusion 

detection systems [33,34]. Due to strong directionality, ultrasonic sensors-based approaches suffer the same problem as in 

infrared-based approaches. Dissanayake et al [35] use the speaker and microphone embedded in smartphone to detect 

intrusion by identifying door opening and closing events based on Doppler shift. However, it is sensitive to location and 

orientation of smartphone because different location and orientation of smartphone may result in completely different 

Doppler shift. In addition, like both radar- and RSSI-based approaches, it also heavily relies on massive data for offline 

training. Microphone array has been used to detect intrusion [1,3]. However, these methods also heavily rely on massive 

data for offline training to cover all the possible conditions. Zieger et al [4] and Zu et al [38] proposed to extract various 

time and domain features of the data received by microphone array to identify intrusion. These approaches are all 

experience-based approaches lacking explainable theory. It leads to poor environment adaptation ability. 

Differently, in this paper, we design and implement AudioGuard, an omnidirectional indoor intrusion detection system 
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using only a pair of speaker and microphone. AudioGuard detects intrusion by fully leveraging abundant multipath 

reflection in indoor environment to capture periodical Doppler shift caused by intruder’s walking. It is able to detect both 

LOS and NLOS intrusions. 

3 DOPPLER SHIFT CAUSED BY INTRUSION IN INDOOR ENVIRONMENT 

3.1 Classical Doppler Effect 

Doppler frequency shift is caused by relative movement between transmitter and receiver. In general, when a receiver 

moves towards a signal source, the frequency of the received signal increases, and vice-versa. Mathematically, the 

frequency of the received signal can be described as follows. 

𝑓′ =
𝑐 ± 𝑣𝑟
𝑐 ∓ 𝑣𝑠

𝑓                                                                                            (1) 

where 𝑓′ is the received frequency; 𝑓 is the transmitted frequency; 𝑐 is the velocity of the wave in propagation medium; 

𝑣𝑟 is the radial velocity of the receiver relative to the medium (positive if the receiver is moving towards the source and 

negative otherwise); 𝑣𝑠 is the radial velocity of the source relative to the medium (positive if the source is moving away 

from receiver and negative otherwise). 

If the signal source and receiver are integrated to form an acoustic radar, then 𝑣𝑟 = 𝑣𝑠. Plugging  ±𝑣𝑠 = |𝒗| ∙ 𝑐𝑜𝑠(𝜃) 

(𝒗 and 𝜃 denote the walking speed of reflector and the angle between 𝒗 and signal source, respectively) into Eq. 1, Doppler 

frequency shift ∆𝑓 can be represented as: 

∆𝑓 = 𝑓′ − 𝑓 = (
2|𝒗| ∙ 𝑐𝑜𝑠(𝜃)

𝑐 ∓ |𝒗| ∙ 𝑐𝑜𝑠(𝜃)
) ∙ 𝑓                                                                     (2) 

When 𝒗 is much less than the velocity of sound 𝑐, we have 𝑐 ∓ 𝑣𝑠 ≈ 𝑐. ∆𝑓 can be further simplified as: 

∆𝑓 =
2|𝒗|𝑐𝑜𝑠(𝜃)

𝑐
𝑓                                                                                    (3) 

The ideal model above assumes that the receiver only receives the signal reflected from the front of the moving reflector. 

Thus, the Doppler shift appears as the peak shift echo spectrum. As shown in Figure 1, when the reflector moves towards 

the transceiver with a speed of 1 m/s, the Doppler shift ∆𝑓  apears as the peak shift of 283.4 Hz (the frequency of 

transmitting signal is 20 kHz and the sampling frequency is 48 kHz).  

 

Figure 1: Classical Doppler shift caused by moving reflector 

3.2 Doppler Shift Caused by Walking in Spectrum 

283.4 Hz
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Comparing with human body, the reflection area of static environment is much larger. In another word, the power of the 

multipath signal reflected from intruder is much lower than the power of the multipath signal reflected from the static 

environment. However, only the signals reflected from the moving object embeds with Doppler shift. It results that rather 

than changing the main peak of echo spectrum, the Doppler shift caused by intruder’s walking appears as sidelobes of echo 

spectrum. Additionally, as shown in Figure 2(a), the change of the reflection path length of the signal reflected from the 

front and the back of intruder are always opposite, so they always introduce opposite Doppler shift (positive Doppler shift 

versus negative Doppler shift). Based above analysis we can finally derive that Doppler shift caused by walking always 

appears as two different shapes of sidelobes at two sides of the main peak of echo. Figure 2(b) shows the PSDs of echo 

(0.1 second) when intruder approaching and leaving the device (the frequency of transmitting signal is 20 kHz and the 

sampling frequency is 48 kHz). So, how to quantify the Doppler shift caused by the walking is challenging.  

We consider a scenario where there are two people in a room and they are out of the sight of each other. For example, 

one is in bedroom and the other one is outside bedroom.  One can still hear what the other says since the voice signals may 

be reflected from the static environment and propagate through multipath. Similarly, due to abundant acoustic multipath 

reflections in indoor environment, even the intruder is in NLOS areas, the microphone can still receive the signal indirectly 

reflected from intruder, thus, the echo still embedded with Doppler shift caused by intruder’s walking. 

  
(a)                                                                                    (b)   

Figure 2: Comparing the frequency resolution of FFT and the proposed method 

3.3 Periodicity of the Doppler Shift Caused by Walking over Time 

Figure 3(a) shows the time-frequency spectrum of the echo when intruder is walking away from the device (as shown in 

Figure 3(b)) and other interference (e.g., object falling, curtains fluttering, opening and closing door and chair sliding) 

happen.  

  
(a)                                                                                                        (b)   

Figure 3: Time-frequency spectrum of the echo when walking and other disturbance events happen. 

From Figure 3(a), we observe that due to the periodic limbs swing during walking, the Doppler shift caused by walking 
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shows some periodicity, while Doppler shift caused by interference is aperiodic. So, our insight to detect intrusion is 

capturing the periodic Doppler shift sequence over time. However, from Figure 3(a) we also observe that the Doppler shift 

varies nonlinearly over time as radial angle and the distance varies during walking (shown in Figure 3(b)). Except for last 

two steps before stop, when the intruder is close to the device, the Doppler shift appears as low frequency shift but high 

power. When the intruder is far from the device, the Doppler shift appears as high frequency shift but low power. As shown 

in Figure 3(b), it is caused by the fact that when intruder is close to the device, the energy of the signal reflected from 

intruder is relative larger, while large radial angle leads to small radial velocity finally resulting in low frequency shift. 

When intruder is far from the device, the energy of the signal reflected from intruder is low, while small radial angle makes 

large radial velocity finally resulting in high frequency shift. So, how to cancel out the impact of radial angle and distance 

variation on the periodicity of Doppler shift is challenging. 

4 SYSTEM DESIGN AND IMPLEMENTATION 

4.1 System Framework 

As shown in Figure 4, AudioGuard has three modules, namely Doppler effect extraction module, periodicity polarization 

module and intrusion detection module. The Doppler effect extraction module extracts Doppler shift using PSD difference 

vector. Periodicity polarization module firstly retains the segments that contain moving events, then polarizes the 

periodicity of the Doppler shift sequence. Intrusion detection module detects intrusion by measuring the periodicity of 

Doppler shift sequence over time. 

  

Figure 4: System framework. 

4.2 Doppler Shift Extraction 

AudioGuard continuously transmits a 20 kHz single frequency acoustic signal, which is inaudible for human, through a 

player. The microphone receives the echo synchronously with the sampling rate 𝑓𝑠 = 48 𝑘𝐻𝑧. The length of the received 

frame is 0.1 second. To remove environment noise in echo, a band pass filter is adapted. Since the maximum walking 

velocity of human is approximately 4.3 m/s, according to Doppler shift formula [41], the maximum Doppler shift caused 

by intruder walking is about 500Hz. Therefore, the pass band of the filter is set as [𝑓𝑐 − 500, 𝑓𝑐 + 500]. 

As mentioned in Section 3, Doppler shift caused by intruder’s walking motion appears as two different shapes of 

sidelobes at two sides of the main peak of echo spectrum. Traditional method, i.e., extracting main peak shift of PSD of 

echo, cannot be applied to capture Doppler shift under this condition. In this paper we capture Doppler shift using PSD 

difference vector.  

PSD can be estimated using the Welch algorithm [6], which can significantly improve the variance characteristics of 

the power spectrum via overlap mechanism, also effectively reduce spectrum leakage via window function. Specifically, 

the PSD of one echo frame 𝑥𝑟( ) is estimated as: 
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𝑃(𝜔𝑘) =
1

𝐿𝑁
∑|∑ 𝑥𝑟( +  ∙ 𝑀)𝑤( )

𝑁−1

𝑛=0

 −𝑗𝑛𝜔𝑘|

2𝐿−1

𝑙=0

                                                      (4) 

where 𝜔𝑘  is the digital angular frequency, which is defined as 𝜔𝑘 = 𝑘∆𝜔 = 2𝜋𝑘 𝑁⁄ .𝐿  is the number of overlapped 

segments. 𝑁  is the length of each segment. 𝑀  is the hop size. 𝑤  is a window function with a length of 𝑁 . As 

aforementioned, Doppler effect caused by walking appears at frequency band 𝑓𝑐 − 500 ≤ 𝑓𝑘 ≤ 𝑓𝑐 + 500. According to 

the relationship between physical frequency 𝑓𝑘  and digital angular frequency  𝜔𝑘  i.e., 𝜔𝑘 = 2𝜋𝑓𝑘 𝑓𝑠⁄ , where 𝑓𝑠  is the 

sampling frequency, we can obtain the range of 𝜔𝑘  

2𝜋(𝑓𝑐 − 500)

𝑓𝑠
≤ 𝜔𝑘 ≤

2𝜋(𝑓𝑐 + 500)

𝑓𝑠
                                                                     (5) 

Plugging 𝜔𝑘 = 𝑘∆𝜔 = 2𝜋𝑘 𝑁⁄  into Eq. 5, we obtain the range of 𝑘 

𝑁(𝑓𝑐 − 500)

𝑓𝑠
≤ 𝑘 ≤

𝑁(𝑓𝑐 + 500)

𝑓𝑠
 

The minimum and maximum of 𝑘 is  

𝑘1 = ⌈
𝑁(𝑓𝑐 − 500)

𝑓𝑠
⌉ , 𝑘𝐻 = ⌊

𝑁(𝑓𝑐 + 500)

𝑓𝑠
⌋ 

Then, PSD difference vector of the echo frame at time  𝑖 is defined as: 

𝑷𝑫𝑖 = (  𝑓𝑓𝑘1
𝑖 ,   𝑓𝑓𝑘2

𝑖 , … ,   𝑓𝑓𝑘𝑚
𝑖 , … ,  𝑖𝑓𝑓𝑘𝐻

𝑖 ), 𝑘1 < 𝑘2 < ⋯ < 𝑘𝐻                                   (6) 

where   𝑓𝑓𝑘𝑚
𝑖  is defined as: 

  𝑓𝑓𝑘𝑚
𝑖 = 𝑃𝑖(𝜔𝑘𝑚) − 𝑃𝑟𝑒𝑓(𝜔𝑘𝑚)                                                                (7) 

𝑃𝑖 denotes the PSD of the echo frame at time  𝑖 (refer to Eq. 4). 𝑃𝑟𝑒𝑓 denotes the reference PSD, which is the average PSD 

of the echo collected from current environment without any movement event. Every time when AudioGuard starting, it 

firstly runs the initializer to obtain reference PSD of current environment. Specifically, initializer continuously estimates 

echo PSD for 20 seconds, then calculates the average PSD value as reference PSD. During this process, any movement 

event is forbidden. If movement happens during getting reference PSD, the initializer automatically repeats getting 

reference PSD. Specifically, if the PSDs show obvious fluctuation, which can be easily observed from the variances of 

points in PSD over time, initializer runs again.  

 

Figure 5: Reference PSDs over five days 
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We randomly record 20 seconds to get reference PSD for five days in same room without movement interference. Fig 

5 shows the recorded reference PSD of each day. It can be observed that the reference PSDs are very similar. It indicates 

that if the environment does not change, we only need to get reference PSD for only one time.  

  
(a)                                                (b)                                                 (c)                                                 (d) 

Figure 6: PSD difference vector. 

Figure 6 (a) show the reference PSD and the PSD of one echo frame when there is no moving object. Figure 6 (b) shows 

the PSD difference vector derived from Figure 6 (a). Figure 6 (c) show the reference PSD and the PSD of one echo frame 

when one subject is walking. Figure 6 (d) shows the PSD difference vector derived from Figure 6 (c). Figure 7 shows all 

the samples of PSD difference vectors during one walking event containing seven steps. Even though during walking, the 

limbs swing is periodic, PSD difference vectors during walking do not show obvious periodicity. It is consistent with our 

analysis in Sec. 3.3. 

  

Figure 7: Samples of PSD difference vector during a walking event. 

Finally, we quantify Doppler shift of the echo frame at time  𝑖 as the first normal form of 𝑷𝑫𝑖, i.e., 

 𝑖 = ‖𝑷𝑫𝑖‖1 =∑|  𝑓𝑓𝑘𝑗
𝑖 |

𝐻

𝑗=1

                                                                           (8) 
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4.3 Periodicity Polarization 

Due to abundant acoustic multipath reflection in room environment, almost all the movement events (e.g., walking, door 

opening and closing, object falling, object sliding, and curtain fluttering) will introduce Doppler shift in echo. We have to 

firstly identify all the movement events, then identify intrusion among these movement events. According to Eq. 8, 

compare with the condition there is no moving object, when moving event happens, the value of  𝑖 will be obviously larger 

due to Doppler shift. So, we can simply truncate the segments containing movement using a threshold. Specifically, to 

avoid the interference caused by system jitter, if  𝑖 is larger than the threshold for 3 times continuously, we start to record 

 𝑖. Similarly, if  𝑖 is smaller than the threshold for 3 times continuously, we stop to record  𝑖. Thus, each movement event 

can be segmented out and  𝑖 over time is recorded. We call the recorded  𝑖 over time as Doppler shift sequence. Figure 8 

shows the Doppler shift sequence of different movement events.  

We observe that the Doppler shift sequences caused by curtain fluttering and object sliding are aperiodic. Even though 

walking is periodic, Doppler shift sequence caused by walking (shown in Figure 8 (c)) shows weak periodicity. It is caused 

by the change of radial angle and the distance from intruder to device during walking (refer to Sec. 3.2). Too weak 

periodicity of Doppler shift sequence caused by walking will result in intrusion detection error. In order to improve 

intrusion detection accuracy, we intend to enhance the Doppler shift with weak periodicity while keep the periodicity of 

aperiodic Doppler shift sequence. In other words, we enlarge the periodicity difference between weak periodic Doppler 

shift sequence and aperiodic Doppler shift sequence. Thus, the intrusion can be easily detected as the Doppler shift 

sequence with strong periodicity.  

  
(a)                                                    (b)                                                     (c)    

Figure 8: Doppler shift sequence of different movement events. (a) Curtain fluttering. (b) Object sliding. (c) Walking. 

It’s well known that strong periodicity simultaneously requires: 1) the shapes of the sequence during all periods are 

similar, and 2) the length of all the periods is almost constant. If any one of the requirements is not met, the signal will 

show weak even no periodicity. From Figure 6, we clearly see that, Doppler shift sequence caused by walking only meet 

the first requirement, while Doppler shift sequences caused by other aperiodic movement do not meet both two 

requirements. If we can enhance the similarity of sequence shape during each period while keep the length of original 

periods, Doppler shift sequence caused by walking will then meet both two requirements, while Doppler shift sequences 

caused by other aperiodic movement only meet the first requirement. Thus, the periodicity of Doppler shift sequence caused 

by walking will be significantly enhanced while the periodicity of Doppler shift sequence caused by other aperiodic 

movement will not be enhanced. 

Periodicity polarization is designed to eliminate the difference of fluctuation amplitude in each period. Specifically, 

periodicity polarization process is composed of detrending, smoothing and amplitude normalization. Firstly, we extract the 
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polynomial trend of Doppler shift sequence and subtract it from Doppler shift sequence. Then, we smooth the detrended 

Doppler shift sequence to eliminate small burrs. Finally, we normalize the amplitude of Doppler shift sequence by eliminate 

the envelop of the sequence using Hilbert transform [37]. For detrended and smoothed Doppler shift sequence 𝒅 =

 1,  2, …  𝑖 , …, discrete Hilbert transform can be calculated by leveraging Discrete Fourier Transform (DFT) and Inverse 

Discrete Fourier Transform (IDFT). 

𝒅̂ = 𝐼𝐷𝐹𝑇(𝑫̂)                                                                           (9) 

where 𝑫̂ is defined as: 

𝑫̂(𝑘) = {
−𝑗𝑫(𝑘), 𝑘 = {

1,2, … ,𝑁 2⁄ − 1,𝑤ℎ   𝑁  𝑠  𝑣  
1,2, … , (𝑁 − 1) 2⁄ , 𝑤ℎ   𝑁  𝑠 𝑜  

𝑗𝑫(𝑘), 𝑘 = {
𝑁 2⁄ + 1,… ,𝑁 − 1,𝑤ℎ   𝑁  𝑠  𝑣  
(𝑁 + 1) 2⁄ , … ,𝑁 − 1,𝑤ℎ   𝑁  𝑠 𝑜  

                                     (10) 

where 𝑫 = 𝐷𝐹𝑇(𝒅). With 𝒅̂, the envelope of 𝒅, i.e., the amplitude of 𝒅 over time can be calculated as 

𝑨( ) = √𝒅( )2 + 𝒅̂( )2                                                                         (11) 

We then normalize 𝒅 as  

𝒅′(𝒏) =
𝒅(𝒏)

𝑨(𝒏)
                                                                                    (12) 

 
(a) Walking                (b) Curtain fluttering            (b) Object sliding              (d) Object falling       (e) Opening or closing door 

Figure 9: Periodic polarization of the Doppler shift sequence of different moving events. 

The subfigures in first line of Figure 9 show the original Doppler shift sequences (blue line) and the Doppler shift 

sequences after periodicity polarization (red line) of different moving events.  Subfigures in second line of Figure 9 show 

the corresponding autocorrelations. Higher peak of the autocorrelation function means stronger periodicity. Comparing the 

autocorrelation of original Doppler shift sequences and that of the Doppler shift sequences after periodicity polarization, 

we can see that the periodicity of Doppler shift sequence of walking is significantly enhanced while the periodicities of 

other Doppler shift sequences are not enhanced obviously. It indicates that periodicity polarization is able to enlarge the 

periodicity difference between weak periodic Doppler shift sequence and aperiodic Doppler shift sequence. 
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4.4 Intrusion Detection 

After periodicity polarization, intrusion can be easily detected as the Doppler shift sequence with strong periodicity.  We 

measure the periodicity of Doppler shift sequence using autocorrelation function. The autocorrelation of the Doppler shift 

sequence after periodicity polarization 𝒅′ is given by: 

 𝑥(𝑘) =
𝑐𝑘
𝑐0
                                                                                  (13) 

where 𝑐𝑘 is the auto-covariance of 𝑺𝒊, 

𝑐𝑘 =
1

𝑁
∑(𝒅′( ) − 𝒅′̅)(𝒅′( + 𝑘) − 𝒅′̅),

𝑁−𝑘

𝑛=1

   𝑘 = 0,1, … ,𝑁 − 1                                    (14) 

From Figure 8, we observe that the autocorrelation function of periodic Doppler shift sequence looks like a sinusoid, 

but its amplitude decreases gradually, while the autocorrelation function of aperiodic Doppler shift sequence varies 

irregularly. Based on this characteristic, the rules are built as follows to judge whether intrusion happens. Suppose the 

coordinate value of first three peaks of the autocorrelation are (𝑝1,  1), (𝑝2,  2), (𝑝3,  3), respectively, then the peak 

intervals are Pk𝐼   𝑣𝑠 = [ 1,  2 −  1,  3 −  2]. If the following rules are satisfied, we judge intrusion happening. 

{

𝑝1 > 𝑃𝑘𝑇ℎ𝑟 ,     𝑝1 > 𝑝2 > 𝑝3,     

𝑚 𝑥(𝑃𝑘𝐼  𝑣𝑠) −𝑚  (𝑃𝑘𝐼  𝑣𝑠)

𝑚   (𝑃𝑘𝐼  𝑣𝑠)
> 𝐼  𝑣𝑇ℎ𝑟 

 

The first rule is designed to ensure that the shapes of the Doppler shift sequence within all periods are similar enough. 

The second rule ensures the lengths of all the periods are almost constant. The combination of the above two rules ensures 

that the detected Doppler shift is strong periodic. According to the experimental results in Sec 5.6 the threshold 𝑃𝑘𝑇ℎ𝑟  

and 𝑃𝑘𝐼  𝑣𝑠 are suggested to set as 0.3~0.4 and 0.1~0.2, respectively.   

5 EVALUATION 

In this section, we conduct comprehensive experiments to evaluate AudioGuard. Firstly, we evaluate AudioGuard with 

LOS intrusion in office, laboratory, and home environment. We then test the performance for NLOS intrusion detection 

with 5 different settings in a real home environment. Finally, we evaluate its robustness. We test the impact of different 

transceivers, the variation of transceiver’s location and orientation, different walking speed and various interference. 

Finally, we discuss the limitations of AudioGuard. The demo video of AudioGuard is available at  

https://tinyurl.com/4y44pdbk and https://youtu.be/iI-Pk4st75o. 

5.1 Prototype Implementation  

We implement AudioGuard on two different acoustic transceivers shown in Figure 10. Two transceivers have same 

commercial microphone (SAMSON MeteorMic, 16 bit, 48 kHz, 96 dB, 20Hz~20 kHz ) but different speakers. The speaker 

in transceiver 1 is a commercial speaker (JBL Jembe, 6 Watt, 80 dB, 80Hz~20 kHz), while the speaker in transceiver 2 is 

a customized speaker (50 Watt, 96 dB, 1 kHz~40 kHz). We use transceiver 2 by default and compare the sensing range of 

transceiver 1 and transceiver 2 in Sec. 5.4.1. The acoustic transceiver is connected to a Lenovo laptop (Intel (R) Core (TM) 

i7-7500UCPU, 8GB RAM). The intrusion detection algorithm is implemented in MATLAB and runs in real-time. The 

frequency of transmitted signal is 20 kHz. The length of echo frame is 0.1 second.  

https://tinyurl.com/4y44pdbk
https://youtu.be/iI-Pk4st75o
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Figure 10: Two different transceivers 

5.2 Evaluation for LOS Intrusion 

As shown in Figure 11, we conduct LOS intrusion detection experiment in three different rooms, i.e., office (5.2m×3m), 

laboratory (8.4m×5.8m), and home (irregular shape, 148 m2). In each environment, four subjects are recruited to enter the 

room or walk freely in the room for at least 100 times to test the miss report rate (i.e., False Negative Rate, FNR). Note 

that in the home setting, i.e., the third setting, to ensure the intrusion is in LOS, the subjects are required to walk in the 

areas highlighted as yellow. 

 

Figure 11: LOS intrusion evaluation in three different rooms 

Table 1: Experimental Result of LOS Intrusion Detection 

Room Number of experiments Number of miss report Miss report rate 

Office 105 0 0% 

Laboratory 121 0 0% 

Home 110 0 0% 

Table 1 shows the experimental result. We can see that AudioGuard accurately captures all the intrusion. Because there 

is no restriction on subjects’ walking path, subjects change walking path dynamically during walking in part of the 

experiments. So, the result also indicates that within its sensing range (more than 120 m2, refer to Sec. 5.5) AudioGuard is 

robust to intruder’s location and walking direction.  

5.3 Evaluation with NLOS Intrusion 

We conduct NLOS intrusion detection experiment in a real home environment. Figure 12 shows the settings. The red 

circles mark the location of the transceiver. The areas highlighted as yellow are the places where intrusion happens. The 

settings ensure that the intrusion happens in NLOS area for transceiver.  

In each setting, three subjects are recruited to walk in the yellow area freely for at least 100 times to test the miss report 

rate. Table 2 shows the experimental result. We can see that in first four settings AudioGuard can accurately capture 

Microphone

Speaker

Transceiver 2Transceiver 1

1 2 3
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intrusions. However, in setting 5, AudioGuard fails because of the lack of effective reflected signal (i.e., the received 

multipath signal reflected from intruder). Similar results occur if the door is closed in settings 1, 2 and 4. In other words, 

if the effective reflected signal is blocked (e.g., door is closed) or the propagation path is too complex requiring too many 

times of reflection (e.g., setting 5), AudioGuard fails to detect intrusion. 

 

Figure 12: NLOS intrusion evaluation settings 

Table 2: Experimental Result of NLOS Intrusion Detection 

Setting Num. Number of experiments Number of miss report Miss report rate 

1 105 1 0.95% 

2 121 2 1.65% 

3 110 0 0 

4 114 2 1.75% 

5 100 87 87% 

5.4 Robustness Evaluation 

5.4.1 Impact of Different Transceiver 

The sensing range is related to transmitting power. In the same environment, larger transmitting power results in larger 

sensing range. We conduct experiments in a laboratory (8.4m×6m×3.4m) and a large lobby (38m×8m×9m) to compare the 

sensing range of two different transceiver mentioned in Sec. 5.1. Specifically, as shown in Figure 13(a) and Figure 13(b), 

we divide the space of laboratory and lobby into 1×1 m2 squares. To make full use of the space we firstly place the 

transceiver at one corner of the laboratory and lobby to measure the sensing range in front of the transceiver. Two subjects 

are asked to walk away from the transceiver at each square. The blue arrows and the dots in Figure 13(a), (b) denote the 

walking direction and the start point of walking. The red circles linked with arrow denote the location and orientation of 

transceiver in Figure 13 (a) ~ (f). If AudioGuard successfully detects the walking events, the square where the subject starts 

walking from is detectable, else the square is undetectable. To estimate the detectable area in the back of transceiver, the 

transceiver is placed facing towards the wall and the subject walk in the area in the back of transceiver.  

The sensing range of transceiver 1 in the laboratory and lobby are shown in Figure 13(c) and Figure 13(d). The sensing 

range of transceiver 2 are shown in Figure 13(e) and Figure 13(f). The squares colored as green denote that AudioGuard 

successfully captures the walking events of both two subjects in these squares. The squares colored as yellow denote that 

1 2 3

4 5
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AudioGuard only captures the walking event of one subject and fails to detect the walking event of another subject in these 

squares. The squares colored as red denote that AudioGuard fails to capture the walking events of both two subjects in 

these squares.  

We observe some interesting phenomena. Firstly, the sensing range of transceiver 2 is larger than that of transceiver 1, 

especially the sensing range in lobby. It reasonable that larger transmitting power of the transceiver result in larger sensing 

range. Secondly, comparing the sensing range of transceiver 1 in laboratory and lobby (as shown in Figure 13(c) and Figure 

13(d)), we find that the space of the lobby is much larger than that of the laboratory, but the detectable area in the laboratory 

is larger than that in the lobby. However, the detectable area of transceiver 2 in the lobby (as shown in Figure 13(f)) is 

larger than that in the laboratory (as shown in Figure 13(e)). It indicates that the sensing range is related to both the 

transmitting power and the space of the environment. Larger rooms may have weaker multipath reflection and finally 

results in smaller sensing range.  

           
(a)                                               (b)                                      (c)                                                    (d) 

    
(e)                                                   (f) 

Figure 13: Sensing range of different transceiver in different environment 

5.4.2 Impact of NLOS distance 

From the experimental results in Sec 5.3, we know that the detectability of NLOS intrusion depends on the complexity of 

signal propagation path, which is closely related to NLOS distance (i.e., the distance along wall which blocks LOS between 

transceiver and intruder). In this section, we evaluate the impact of NLOS distance on intrusion detecting accuracy. 
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Specifically, the evaluation environment is shown in Figure 14(a). Two adjoining rooms (6m×3m) are connected by a door. 

The transceiver is placed in one room and the intrusion happens in the other room. The black arrows denote five walking 

paths that has different distance from the wall, 1 ~ 5 m. For each path, the one subject is recruited to walk 50 times. Figure 

14(b) shows the miss report rates when subject walks along different paths. When the distance is larger than 3 m, the miss 

report rate increases significantly.  Though increasing transmitting power may mitigate this problem, as NLOS distance 

increases, failing to detect intrusion is inevitable. 

  
(a) Experimental settings                  (b)Miss report rate of each path 

Figure14. Impact of NLOS distance 

5.4.3 Impact of The Location and Walking Direction of Intruder 

Adapting to the variation of intruder’s location and walking direction is necessary for intrusion detection in real application 

environment. We now conduct experiments to test the impact of the location and walking direction of intruder on intrusion 

detection. As shown in Figure 15 (a), we divide the room (10m × 8m × 3.4m) into 8 areas with different shapes. The 

transceiver is placed at the center facing left (highlighted as the yellow circle with an arrow). 15 participants (including 5 

females and 10 males) are recruited to walk in each area towards nine different directions (direction 9 is clockwise circle) 

to test the missing report rate. Each subject walks for two times towards each direction in each area.  From the layout of 

the areas, areas 1 and 3, areas 7 and 5, areas 8 and 4 are all symmetric, respectively. So, we only need to test AudioGuard 

in the areas 1, 2, 6, 7 and 8.  

 

(a) The areas and walking directions          (b) Missing report rate in each area                  (c) Miss report rate of each direction 

Figure 15: Evaluation with Various Location and Walking Direction of Intruder 

We summarize the experimental results from two aspects. Figure 15(b) shows the missing report rate in each area. We 

observe that except for area 6, the missing report rates of other areas are lower than 5%. The missing report rates of area 6 

is slightly higher because area 6 is directly behind the transceiver. From the result of experiments in Sec. 5.4.2, the 

detectable area behind the transceiver is smaller than other orientations. In other words, the detectability of area 6 is 
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relatively lower than other areas. Figure 15(c) shows the statistics of missing report rate of each direction. We see that all 

the missing report rates are lower than 4%. In summary, the results indicate that AudioGuard is robust against intruder’s 

location and walking direction.  

5.4.4 Impact of The Location and Orientation of Transceiver 

Robustness to the variation of transceiver’s location and orientation is important for practical application. We place the 

transceiver randomly to test the missing report rate.  

                        

(a) Location and orientation of transceiver in each experiment.     (b) Miss report rate of each experiment. 

Figure 16: Evaluation with Various Location and Orientation of Transceiver 

Figure 16(a) shows the transceiver’s location and orientation in 8 experiments. In each experiment, 3 subjects are 

recruited to enter the room or walk freely in the room (8.4m×5.8m). Figure 16(b) shows the miss report rate in each 

experiment. We observe that the miss report rates are all lower than 4%. It indicates that AudioGuard is robust against the 

variation of transceiver’s location and orientation. 

5.4.5 Impact of Walking Speed 

Different people have different walking speed. It’s necessary to test the robustness against different speed. 5 subjects are 

recruited to evaluate the miss report rate of AudioGuard. Subjects are required to walk at four speed levels: 0.5~0.8 m/s, 

0.8~1.2 m/s, 1.5~2 m/s and 2~3 m/s. There is no restriction for walking path. The experimental result is shown in Figure 

17. We observe that there is no miss report when the walking speed is lower than 1.2 m/s, which is a normal walking speed. 

When walking fast, i.e., the speed reaches 1.5 ~ 2 m/s, the miss report rate is still lower than 10%. When running, i.e., the 

speed reaches 2 ~ 3 m/s, the miss report rate increases significantly.  It is reasonable that when running the stride frequency 

is about 2 ~ 4 steps per second, i.e., 2 ~ 4 Hz. As mentioned in Sec. 4.2, the length of the received echo frame is 0.1 second. 

It means that the sampling rate of Doppler shift is 1 0.1⁄ = 10 Hz, which is too low to clearly depict the periodicity of 

Doppler shift sequence caused by running. Thus, when running, the miss report rate increases significantly.  

 

Figure 17: Effect of walking speed 

2

1

4

56

3

8
7



18 

5.4.6 Impact of Interference 

We now conduct experiment to test the robustness against noise interference (talking, knocking door, playing music) and 

movement interference (opening or closing door and window, object falling, curtain fluttering).  

As shown in Table 3, there are 6 different interferences, and each interference is repeated for 20 times. Totally 120 

times interference randomly mixed with an equal number of walking are used to test both the miss report rate and false 

alarm rate (i.e., False Positive Rate, FPR). Figure 18 shows the confusion matrix.  

Table 3: Interference 

Interference Number of experiments 

Talking 20 

Knocking door 20 

Playing music 20 

Opening or closing door and window 20 

Object falling 20 

Curtain fluttering 20 

 

Figure 18: Confusion matrix 

5.4.7 Impact of Key Thresholds 

We now evaluate the impact of two key thresholds, i.e., 𝑘𝑇ℎ𝑟  and 𝑃𝑘𝐼  𝑣𝑠 (refer to Sec. 4.4) on miss report rate and 

false alarm rate. We know that common ambient noise cannot incur false alarming as they do not incur Doppler shift. So, 

in this experimental, we only add three kind of movement events (including opening or closing door and window, object 

falling and curtain fluttering) as interference. Specifically, intrusion and movement interference randomly happen for 100 

times and 60 times respectively. Figure 19 (a) shows the ROC curve when 𝑃𝑘𝐼  𝑣𝑠 = 0.1 and 𝑘𝑇ℎ𝑟  varies from 0.1 to 

0.6 with a step of 0.1. Figure 19 (a) shows the ROC curve when 𝑘𝑇ℎ𝑟 = 0.3 and 𝑃𝑘𝐼  𝑣𝑠 varies from 0 to 0.2 with a 

step of 0.05. According to above results, 𝑃𝑘𝑇ℎ𝑟  and 𝑃𝑘𝐼  𝑣𝑠 are suggested to set as 0.3~0.4 and 0.1~0.2, respectively. 

 

Figure 19: Impact of two key thresholds, 𝑃𝑘𝑇ℎ𝑟  and 𝑃𝑘𝐼  𝑣𝑠 
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5.5 Consuming Time Evaluation 

In this section, we conduct an experiment to test the computational overhead of AudioGuard. As presented in Sec. 4.2, the 

length of the received audio frame by the microphone is 0.1 second. The iteration cycle of AudioGuard is equal to the 

length of audio frame. To ensure AudioGuard runs in real time, the consuming time of signal processing have to be shorter 

than 0.1 second, else frame drop occurs. We test the consuming time of the signal processing of AudioGuard under three 

different settings: 1) no any movement happens, 2) movement interference happens, 3) intrusion happens. For each setting,  

AudioGuard iterates for 1000 times and we record the consuming time. Table 4 shows the statistics of the consuming time 

under three settings. We observe that the maximums of consuming time of signal processing under three settings are all 

smaller than 0.049 second, which is far less than the upper bound 0.1 second. 

Table 4: System run-time and latency 

 Number of Iterations Mean Variance Minimum Maximum 

No any movement  1000 0.027 0.000 0.025 0.036 

Movement interference happens 1000 0.027 0.000 0.025 0.041 

Intrusion happens 1000 0.028 0.003 0.026 0.049 

5.6 Discuss 

We now discussion limitations in the current implementation.  

1) AudioGuard can only detect the intrusion caused by single intruder. It cannot detect intrusion caused by multiple 

intruders. AudioGuard detects intrusion by measuring the periodicity of Doppler shift. When multiple intruders walk 

simultaneously, their different stride frequencies (non-multiple) incur aperiodic Doppler shift, which will be regarded as 

interference by AudioGuard. A promising way to tackle this problem is decomposing Doppler shift sequence using the 

method such as time-frequency domain analysis and independent component analysis (ICA). 

2) AudioGuard is sensitive to periodical movement interference. As mentioned in Sec. 3.3, the basic idea of 

AudioGuard is to capture the periodical Doppler shift sequence, when periodical movement interference happens, 

AudioGuard may experience false alarms. It is worth noting that the periodical sound interference (such as the sound of 

knocking door, the sound of footsteps outside the room, the sound of periodical music, etc.) will not result in false alarm. 

Because pure sound will not introduce Doppler shift. To avoid periodical movement interferences, other features of 

Doppler shift need to be extracted to distinguish the category of moving object. 

3) AudioGuard may miss the intrusion when intruder is running. As mentioned in Sec. 5.4.5, running will blur the 

periodicity of Doppler shift sequence, which may finally lead to miss report. 

4) AudioGuard may miss the intrusion in NLOS condition if the reflected signal is seriously blocked. As mentioned 

in Sec. 5.3, if the reflected signal is completely blocked by door, AudioGuard fails. Additionally, if the propagation path 

between the area where the transceiver locates and the area where the intruder locates is too complex requiring too many 

times of reflection, AudioGuard fails. This problem may be solved by exploiting room Channel Impulse Response (CIR) 

estimation, which is able to quantify both the time delay and amplitude attenuation of the multipath signals. CIR is more 

sensitive to movement than Doppler effect in indoor environment. 
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