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ABSTRACT

Device-free passive indoor localization is playing a critical role
in many applications such as elderly care, intrusion detection,
smart home, etc. However, existing device-free localization
systems either suffer from labor-intensive offline training or
require dedicated special-purpose devices. To address the
challenges, we present our system named MaTrack, which
is implemented on commodity off-the-shelf Intel 5300 Wi-Fi
cards. MaTrack proposes a novel Dynamic-MUSIC method to
detect the subtle reflection signals from human body and fur-
ther differentiate them from those reflected signals from static
objects (furniture, walls, etc.) to identify the human target’s
angle for localization. MaTrack does not require any offline
training compared to existing signature-based systems and is
insensitive to changes in environment. With just two receivers,
MaTrack is able to achieve a median localization accuracy
below 0.6 m when the human is walking, outperforming the
state-of-the-art schemes.

ACM Classification Keywords
C.3 Special-purpose and application-based systems: Signal
processing systems

Author Keywords
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INTRODUCTION

Indoor localization system is playing a more important role
in many emerging applications, such as indoor navigation,
augmented reality, disaster rescue, elderly care, etc. In recent
years, Wi-Fi-based localization systems [2, 47, 51, 53] are
considered most promising due to the ubiquitousness of Wi-
Fi deployments in public, enterprises, universities and also
homes. Earlier pioneering work [2] employs Received Sig-
nal Strength Indicator (RSSI) information widely available
at the access points (APs) as a unique signature to locate the
targets. Recently, with the adoption of MIMO technologies in
the latest 802.11n and 802.11ac Wi-Fi standards, channel state
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information (CSI) is employed for localization purposes [31,
47, 51]. Compared with coarse RSSI with only amplitude for
the whole channel, CSI contains both amplitude and phase of
each subcarrier, which has also been used for activity recogni-
tion [12, 35, 39, 54]. Another interesting trend with MIMO is
more antennas are equipped at the latest 802.11n and 802.11ac
APs. This unique opportunity enables angle-of-arrival (AoA)
based localization systems [19, 47] which are able to achieve
below 1 m accuracy. However, these systems still require the
user to carry a device which could transmit or receive Wi-Fi
signals. On the other hand, device-based localization is not
applicable in a lot of scenarios. In elderly care, the elders are
usually reluctant [34] to carry mobile or wearable devices. In
intruder detection and terrorist tracking, the targets will delib-
erately discard any device that can be tracked. These real-life
scenarios motivate the needs for device-free localization in
recent years.

The state-of-the-art device-free approaches on commodity Wi-
Fi devices employ RSSI or CSI as fingerprints [1, 30, 53],
which need substantial radio-map survey and labor-intensive
offline training. Once there are changes in the monitoring
environment, the fingerprint database needs to be updated
accordingly which is time consuming. Furthermore, the per-
formance of fingerprint-based methods decreases significantly
when the target is moving. The Doppler shifts due to target
movements make the signature-location relationship unstable
so a high localization accuracy is difficult to be achieved. Ex-
isting solutions either require high density deployment [22, 42]
or need dedicated devices to send out customized signals [18,
42], limiting large scale deployments in real life. To the best
of our knowledge, an accurate device-free localization system
hosted on commodity Wi-Fi infrastructure for a mobile target
is still missing.

Recently, the multiple signal classification (MUSIC) algo-
rithm [29] is widely employed to estimate the AoA of incom-
ing signals for device-based localization [19, 47] as shown
in Figure 1(a). One key challenge for AoA-based systems is
the strong multipath reflections in an indoor environment and
only the direct path is pointing to the true location of the target.
However, for device-free localization, the direct path is not
related to the location of the target. As shown in Figure 1(b),
different from device-based localization, the reflection path
now contains the angle information of the target to the receiver.
The target serves like a relay transmitter to reflect the signal
to the receiver. If there are more than one Wi-Fi receivers and
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Figure 1. AoA-based localization

each could obtain the target’s AoA from the reflection path,
we can locate the target with triangulation.

In this paper, we propose a device-free passive indoor localiza-
tion system called MaTrack using commodity Wi-Fi chipsets
without a need of radio-map survey or any hardware mod-
ification. To realize it as a functional system, a number of
challenges need to be addressed:

e Different from device-based localization identifying the di-
rect path, for device-free localization, the signal reflected
from the target (human) is what we care about. In a typi-
cal indoor environment, there is only one direct path but
multiple reflection paths from the target and other reflectors,
such as walls and furniture. We need to identify which path
is from the target for localization.

e Compared to direct path signal, reflection path signals are
much weaker. With a 3-antenna AP, the traditional MUSIC
algorithm is only able to capture a maximum of two signals
including the direct path signal and the strongest multipath
signal. The reflection signal from the target usually is not
the strongest. Therefore, detecting a reflection path from
the target with a limited number of antennas is challenging.

e The reflected signal from the target may be further reflected
by other objects before reaching the receiver. If the target is
not the last reflector, the signal does not contain the angle in-
formation of the target. We need to identify those reflection
paths directly from the target without other reflections.

To address these challenges, we propose a novel Dynamic-
MUSIC method to detect the weak signal reflected from the
moving target and obtain the corresponding AoA for localiza-
tion. The intuition is that, signals reflected from the moving
target keep changing and are incoherent with the direct path
signal and signals only reflected by static objects. The direct
path signal and signals only reflected by static objects are
coherent with each other. Coherency is considered harmful for
the traditional MUSIC algorithm and different schemes [19,
32, 47] were proposed to remove the coherence among signals
for accurate AoA estimation. Our Dynamic-MUSIC method,
on the other hand, intelligently leverages this ‘bad’” coherence
to merge the static signals and detect the signals reflected from
the moving target. The paths reflected from the moving target
are called mobile paths while the direct path and other reflec-
tion paths are called static paths. We employ the APs with
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known locations to be the receivers and any Wi-Fi capable
device can serve as the transmitter. The proposed method does
not need to know the locations of transmitters. This property
makes it flexible and can easily be adopted in different envi-
ronments for large scale deployments. To summarize, we have
made the following contributions in this paper:

1. We analyze the coherency relationship among signals in
a multipath environment and prove that any mobile path
signal is incoherent with static paths signals.

2. We propose a Dynamic-MUSIC method to identify the
angle of the moving target. We intentionally keep the ‘bad’
coherence among signals to merge the static paths so the
requirement of higher number of antennas is efficiently
relaxed. By exploiting the stability of the paths, we are able
to identify the mobile paths without any offline training. We
leverage the relative ToA (time-of-arrival) information to
identify the shortest mobile path to obtain the target’s angle.

3. We propose a novel scheme to utilize the slight movement
of the target to increase the detection rate and area coverage
significantly. With only 2 receivers and 3 consecutive mea-
surements within 0.04 s, the target can be detected close to
100% of the time. This sparse deployment property makes
our method be an ideal candidate for large scale deploy-
ment.

4. We design and implement the system on Intel 5300 com-
modity Wi-Fi chipsets and evaluate the system in three
indoor environments. With only 2 receivers, MaTrack is
able to achieve a median localization accuracy of 52 cm and
62 cm when the target is spinning and walking, respectively.

The subsequent sections are organized as follows: Section 2
discusses the related work. In Section 3, we present the key in-
tuitions of our method. Section 4 presents the detailed design.
In Section 5, we evaluate our system in three real-life envi-
ronments. We discuss the limitations related to our method in
Section 6 followed by a conclusion in Section 7.

RELATED WORK

Different technologies have been employed for indoor localiza-
tion, such as camera [3, 4], RF [2, 33, 36, 37, 50], infrared [8,
13], Ultra-wideband (UWB) [9], sound [14, 41], and recently
visible light [15, 20], etc. While camera based system is able to
achieve a high accuracy, good lightening condition and privacy
concern are two big issues for real-life deployment. Sound
based location systems are usually vulnerable to acoustic noise
and the coverage area is limited. Dedicated infrastructures
are needed for infrared base system while visible light only
works in LoS scenarios. In this work, we focus on Wi-Fi
based schemes as Wi-Fi APs are now widely deployed ubiqui-
tously. Wi-Fi based indoor localization systems can be broadly
categorized into two groups: device-based and device-free.

Device-based indoor localization with Wi-Fi

A lot of device-based systems have been proposed in literature.
RADAR [2] is a pioneering system employing Wi-Fi RSSI
information as a signature for localization and a lot of works
are proposed later either to reduce the offline training load [5,



17] or improve the accuracy [49, 52]. In the last few years,
fine-grained CSI was used for location estimation [31, 44,
51]. With 802.11n and 802.11ac standards, more antennas are
equipped at a single AP and this opportunity is leveraged to
obtain the AoA information for localization [19, 47]. However,
all these works require the target to hold a device which could
transmit Wi-Fi signals actively and the direct path signal is
identified and used to locate the target.

While popular with UWB technology [9], time-based (ToA)
localization is rare with Wi-Fi because the narrow channel
bandwidth (20 - 40 MHz) is not enough to achieve a fine time
resolution for indoor localization. With 802.11ac supporting a
maximum of 160 MHz channel on 5 GHz band, some recent
works [46, 48] propose to combine adjacent smaller chan-
nels to form a virtual larger channel to increase the resolution.
However, the Wi-Fi channels on 5 GHz band are not contin-
uous and non-adjacent channel combination is difficult. In
2.4 GHz band, a total of 70 MHz available bandwidth is still
too narrow to achieve a high localization accuracy.

Device-free localization with Wi-Fi

In 2007, Youssef et al. [53] introduced the concept of device-
free localization and a lot of works have been proposed since
then. Seifeldin et al. developed the Nuzzer system [30] using
the RSSI signature as a fingerprint. Pilot [45] and Mono-
PHY [1] systems employ the finer CSI information as the
fingerprint to improve the performance. E-eyes [40] utilizes
the amplitude pattern of CSI to build a fingerprint map to
identify the target’s moving trajectory and accordingly de-
termine the destination room. Ichnaea [28] is a device-free
tracking system based on RSSI with an offline background
training phase and is able to achieve a median accuracy of
2.5 m. All of these works need a substantial radio-map survey
and labor-intensive fingerprint updates when there are changes
in the environment. Ohara et al. [22] propose a fingerprint-
based device-free method to locate the mobile target and apply
model transformation scheme to reduce the offline training
load. However, this method relies on the target’s influence on
the direct path signal. Thus, it needs a high density deployment
to cover the monitoring area with an accuracy of around 2 m.
Wilson et al. [42] introduce a radio tomographic imaging (RTI)
method to achieve a high accuracy for moving target localiza-
tion. This method also requires a dense deployment which is
not realistic in most indoor environments. Different from these
works, our MaTrack system utilizes the CSI subcarrier phase
measurements across antennas to identify the moving target’s
angle information. MaTrack can locate the target passively
with only two receivers and still achieves a high accuracy.
Moreover, our scheme does not require any radio-map survey
or offline training process and is robust against changes in the
environment.

WiDeo [18] is a device-free system proposed to track the hu-
man’s motion with Wi-Fi signals. WiDeo is implemented
on the WARP software-defined radio platform [21] and hard-
ware modification is required to implement it on commodity
Wi-Fi cards. WiSee [23] is able to capture the Doppler shift
introduced by a moving object for gesture recognition. The
amount of Doppler shift is dependent on the object’s moving
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Figure 2. Multipath environment with a moving human

speed, which has also been used for sleep sensing [24] and
facial gesture recognition [10]. However, all the above sys-
tems are built on dedicated special-purpose hardware. The
Doppler shift introduced by a moving human is merely a few
hertz while the frequency offset between the transmitter and
receiver can be up to several hundreds hertz. This makes it
challenging to detect the small Doppler shift for localization
on commodity Wi-Fi cards. Furthermore, in order to obtain
an accurate Doppler shift for localization, the packet interval
needs to be measured in an accuracy level of nano-seconds
which is very hard with commodity Wi-Fi cards.

The MIMO radar [16, 38, 55] uses phased array techniques
to locate target in the outdoor environment. It requires a high
number of antennas and dedicated FMCW signal to identify
the target’s accurate AoA and ToA information, while FMCW
signal is not compatible with the Wi-Fi standards. Different
from these works, our MaTrack system is implemented on the
off-the-shelf commodity Wi-Fi chipsets with only 3 antennas
without any hardware modification.

MULTIPATH ENVIRONMENT WITH A MOVING HUMAN

In a typical indoor environment, the Wi-Fi signal is propagated
not only along the direct path, but also reflected by objects,
walls, ceilings and floors. The signal received at the receiver
is a superposition of signals from all the paths. Suppose the
Wi-Fi signals arrive at the receiver through n different paths,
including the direct path, we express the overall signal as:

S(t) = [s1(t),...,s,(0)]" (1)
where s;(¢) represents the #"-path signal at time .

Considering the scenario in Figure 2, where there are two
reflectors (including the human target), the Wi-Fi signal is
transmitted along the direct path and also reflected by the
reflectors before arriving at the receiver. The human target
may have more than one reflection paths to the receiver. When
the target is moving, the reflection paths from the human target
keep changing in terms of amplitude and phase. Before we
introduce the detail design of MaTrack, we would like to
present the following key insights of our method:

e Static path signals are coherent with each other: Static
paths do not change with time. The shortest static path is the
direct path and we express its signal as s;,1 (7). The subscript
s means it is a static path signal. The " static path signal
can be expressed as s; (1) = os;,1 (1), where ¢; is a complex
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number describing the gain and phase relationship between
the /" static path and the direct path signals. All static path
signals have the same central frequency and constant phase
differences with each other. Thus, they are coherent.

e Mobile path signals are incoherent with static path sig-
nals: The movement of the human target will introduce
a Doppler frequency shift on the signal. Besides the fre-
quency, the lengths of mobile paths also keep changing.
Similar to static paths, the j# mobile path signal can be ex-
pressed as sy, (1) = B;j(1)ss,1(1), where B;(z) is the complex
number describing the gain and phase relationship between
the j'* mobile path signal and the direct static path signal at
time . Note f3;(¢) is not a constant value because the path
length keeps changing when the target is moving. Because a
mobile path signal goes through a round trip at the reflection
surface, the path length change rate is approximately twice
the radial velocity of the reflection surface [39]. Without
loss of generality, we assume the radial velocity of the re-
flection surface is equal to the human target’s moving speed.
If the moving speed is 0.5 m/s, the phase change rate of
the mobile path is 27T fv 4 /c = 100 radians/s for a 5 GHz
Wi-Fi signal. Therefore, the phase change is obvious and
B(¢) is time variant. For two signals to be coherent with
each other, they must have the same central frequency and a
constant phase difference over time [43]. Therefore, mobile
path signals are incoherent with static path signals.

e Mobile path signals are incoherent with each other: The
human target can be treated as a polyhedron with multiple
reflection surfaces. A human target may have more than
one reflection paths from different reflection surfaces to
the receiver. We observe that different reflection surfaces
have different radial velocities so the phase change rates
are also different. When the human is walking, the speed
of the arms can be twice of the torso [7]. If the radial
velocity difference is 0.1 m/s, the phase change rates have
a difference of 27T fAV i, /¢ = 20 radians/s. Thus, mobile
path signals are incoherent with each other.

According to the above three observations, we can rewrite
Equation 1, the multipath signal vector, as:

S(t) =[s5,1()s- s Ssn, )y Sm1 ()5 s Sy, (t)]—r
= [alss,l (l‘), ey Oy Ss 1 (t),st (t), e S, (l‘)]T(Z)

where ng and n,,, are the numbers of static paths and mobile
paths respectively.

e The shortest mobile path contains the angle informa-
tion of the target: In an indoor environment, a reflection
path may be reflected by more than one reflectors. For a
mobile path, if the human target is the last reflector, the sig-
nal is like being ‘transmitted’ from the target and the AoA
of this path can be employed to locate the target as the path
3 shown in Figure 2. If the human target is considered as a
point, the mobile path only reflected by the human target is
always the shortest mobile path. However, the human target
has a non-negligible size and this statement is no longer true
theoretically. In real life experiments, the path difference
caused by the human size is much smaller compared to the
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extra path distance caused by another reflector. Therefore,
we are still able to treat the shortest mobile path as the one
only reflected by the human target. The human target is the
last reflector of the shortest mobile path, so its AoA can be
employed to locate the target. We call the shortest mobile
path target path.

DYNAMIC-MUSIC METHOD

In a typical indoor environment, there are around 4 - 8 signifi-
cant reflection paths [6]. Besides the static paths from static
reflectors, the moving target generates mobile paths. To locate
the moving target, the key is to identify the target path and
accurately estimate the AoA of this path. In the past few years,
the well-known MUSIC algorithm [29] has been employed
to estimate the direct path AoA for device-based localization.
Different from previous work, we need to identify the AoA of
the target path, which is a reflection path and is usually weak.
There is only one direct path but usually many reflection paths.
Thus, identifying the AoA of the weak target path is more
challenging and the-state-of-art MUSIC-based methods can
not be applied directly on commodity Wi-Fi devices to solve
our problem. To address this challenge, we propose a novel
Dynamic-MUSIC method to identify and accurately estimate
the AoA of the target path. We first present the MUSIC algo-
rithm followed by our method.

Estimating AoA with MUSIC

The basic idea of standard MUSIC algorithm is that incident
signals from different angles introduce different amounts of
phase changes on each antenna at the receiver. For clarity
of explanation, we first introduce the phased array structure
with only one incident signal and illustrate how to estimate the
signal’s AoA. Then we extend the model to handle multiple
incident signals with MUSIC.

Phased array with one incident signal

Assume there is a linear array with M antennas at the receiver.
An incident signal is received at the antenna array with an
arriving angle 6, shown in Figure 3. The antenna spacing
d is half-wavelength of the signal. The signal has different
propagation lengths at different antennas. The propagation
paths are much longer than the antenna spacing d, so the
path difference between adjacent antennas can be expressed
as dsin(0). Therefore, a phase difference of —27 fdsin(0)/c
is introduced at adjacent antennas, where f is the signal fre-
quency and c is the speed of light. We can thus denote the
introduced phase difference as a function of the AoA:

@(9) — eijnfdsin(G)/c 3)



The phase differences at the antenna array are expressed as:
a(6) = [1,2(6),...,2(0)" '] )

where a(0) is called the steering vector. If the signal received
at the first antenna is s(r), the received signal vector at the
antenna array can be expressed as:

X(1) = [x1(t),...,x(t)]" =2a(0)s(r) +N(r) 5)

where N(7) is the noise vector. With only one incident signal,
the AoA 6 can be obtained easily by measuring the phase
differences across antennas with Equation 3.

Phased array with multiple incident signals

When there are n incident signals arriving at the antenna array,
the received signal at each antenna is the superposition of all
incident signals. Based on Equation 5, the received signal
vector is expressed as:

X)) = [x@),... ,xM(t)]T
= ;a(e,»)si(t)+N(t)
AS(t) +N(t) (6)

where 6; represents the AoA of the i’" incident signal, and s;(t)
is the i incident signal at the first antenna.

AoA Estimation with MUSIC

The basic idea of the standard MUSIC algorithm is eigenstruc-
ture analysis of an M x M correlation matrix Rx of received
signal X at M antennas. From Equation 6, we express Rx as:

Rx = E[XXY
AE[SSH]AM + E[NNH]
= ARGA" + 671 (7

where Ryg is the correlation matrix of the complex signal vector.
The correlation matrix Rx has M eigenvalues. The smallest
M — n eigenvalues are corresponding to the noise and the other
n eigenvalues are corresponding to the » incident signals. The
eigenvectors corresponding to the smallest M — n eigenval-
ues construct a noise vector subspace Exy = [el,...,eM,,,],
and the other n eigenvectors construct a signal subspace
Es = [ey—n+1,---,€m]. The signal and the noise subspaces
are orthogonal so the spatial spectrum function is expressed
as:

1
(6)ENEx"a(6)
in which sharp peaks occur at the AoAs of the incident signals.

In practice, we average multiple data samples to mitigate
random noise and obtain the correlation matrix as below:

®)

P(0)music = T

— 1 &
Ry = - ) Xx" ©)
L=
where L is the number of samples employed.
Overview of Dynamic-MUSIC

To locate a human target with the reflected signal, our
Dynamic-MUSIC method contains the following components:
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e Super-resolution AoA estimation: With 3 antennas on the
commodity Intel 5300 card, only two paths can be captured
with the traditional MUSIC algorithm [29] and it also limits
the resolution of AoA estimation. We leverage the fact that
all static paths are merged into one on the spectrum due
to signal coherence to significantly reduce the number of
antennas required to capture all the paths. Moreover, the
incoming signals also introduce phase differences across
subcarriers besides across antennas. Based on this, we suc-
cessfully obtain ToA estimation for each path and capture
information in two dimensions.

e Mobile paths identification: Among all the reflection
paths, we need to identify which paths are mobile paths
reflected from the moving target. We observe that, when
the human is walking, not always there is a reflection path
from the target to the receiver. We employ this unique ob-
servation to identify the mobile paths. We take several AoA
measurements within a short time window. The static path
is always there. However, the mobile path may disappear
due to the small movements of human target. By checking
the stability of the path at slightly different locations, we
can successfully identify the mobile paths at a high rate.

o The target path identification: Among the several mobile
paths, we need to identify the one whose last reflector is the
target. As described in previous session, the shortest mobile
path is the target path, containing the angle information
of the target. With the relative ToA for each path, we can
identify the shortest mobile path and obtain its AoA.

e Area coverage: When the target is at some positions,
the reflection path may not be detected. We propose a
novel scheme to employ multiple consecutive measurements
within a short time window to ensure the target path can be
detected so the AoA can be obtained.

o Target localization: With the AoAs at multiple receivers,
the location of the target can then be estimated.

Super-Resolution AoA Estimation

We leverage the 30 subcarriers available on the commodity
Wi-Fi card to increase the number of effective sensors without
any hardware modification, overcoming the 3-antenna barrier.
Similar to SpotFi [19], the key insight is that incoming signals
do not only introduce phase differences across antennas but
also introduce phase differences across subcarriers. Different
paths have different ToAs when reaching at the receiver. The
time differences introduce measurable phase differences across
subcarriers. For evenly-spaced subcarriers, the phase differ-
ence introduced across two adjacent subcarriers is —27 57,
where fs! is the subcarrier size and 7 is the ToA. We denote
the complex exponential of the introduced phase difference
across subcarriers as a function of the ToA of the path:

Q1) = ¢ 2o (10)

where 7; is the ToA of the i"" propagation path. Based on
this, we could form a virtual sensor array composed of all
subcarriers. Thus, for M antennas and K subcarriers, we

1f5 is 312.5 KHz for 40 MHz Wi-Fi channels.
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obtain a total of M x K sensors. For a path with AoA 6 and
ToA 7, the steering vector in Equation 4 can be rewritten as:

a(0,7)=[1,....Q5 ol etk

where Q; and ®y are abbreviations for Q(7) and ®(0). If

the received signal of the i path for the first subcarrier at the
first antenna is s;(¢), the received signal at each sensor is a
superposition of all paths. When there are n signals arriving,

the signal at the receiver in Equation 6 is rewritten as:

X(1) = [a(61,71),...,a(0,,T)][s1(2), ..., 5. ()] " +N(r) (12)

The effective number of sensors (M x K) is now much larger
than 3, breaking the number of antenna limit. Thus, the spec-
trum function in Equation 8 is rewritten as:

1
(97 T)ENENHa(67 T)

which is extended to provides both AoA and ToA estimations.

P(8,T)music = T (13)

For traditional MUSIC algorithm, the coherence among
signals degrades the performance significantly. Previous
works [19, 47] remove the coherence by sacrificing the ef-
fective number of sensors and all multipath signals will be
identified on the spectrum, shown in Figure 4(a). However,
we find that we can utilize this ‘bad’ coherence to merge the
useless paths so that the number of paths we need to detect
is decreased without sacrificing any precious sensor. The key
intuition is that without any spatial smoothing scheme to re-
move the coherence among signals, the static paths will merge
together while the mobile paths will be clearly detected. We
run benchmark experiments to verify this key finding. We let a
person hold a steel plate so the steel plate generates a reflection
path to the receiver. We carefully choose the position of the
person to ensure the reflection path’s AoA is at 45° for veri-
fication. If the person moves the plate slightly, the reflection
path from the plate is a mobile path, otherwise it is a static
path. We can clearly see in Figure 5(a), when the plate is static,
we could only obtain one cluster of AoAs of the merged-static
path and they do not change much. When the plate is moved,
we obtain two clusters of AoAs in Figure 5(b): one belongs to
the static path and the other belongs to the mobile path. The
AoAs of the mobile paths are clustered at 45°, matching the
angle of the reflection path from the plate. So with a mov-
ing human, based on the signal vector in Equation 2, we can
rewrite Equation 12 as:

X() = [a(61,71),.,a(60, 5)][51(0),- . 5a(6)]+N()

m
Z Q;Ss 185 + Z Sm.,i@m,i + N(l)
i=1 i=1

Ss.1
715 Sm,1
= [Z O‘ias,ham,lynwam,nm] +N(t) (14)
i=1
Sm,n,,,

where a; ; and s, ; are corresponding to the " static path, and
a,,; and s,,; are corresponding to the i " mobile path.

Based on Equation 14, we can detect n,,, + 1 paths [32]. All
static paths we don’t care about are merged into one path [47]
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and we call it merged-static path. We purposely keep the
coherence to merge all static paths to reduce the number of
paths on the spectrum. The direct path signal is usually much
stronger than the reflection path signals so the merged path
peak is close to the original direct path peak on the spectrum
shown in Figure 4(b). Thus, the useless static paths are merged
and only one static path exists on the spectrum. On the other
hand, the mobile-path signals and static path signals are in-
coherent and do not merge. When a mobile target is present,
the mobile path signal which is important for us is detected
together with the merged-static path shown in Figure 4(c).

Mobile Paths Identification

On the spectrum shown in Figure 4(c), mobile path and merged
static path both exist. It’s not easy to identify the mobile
path on the spectrum without any environmental training. We
observe that the merged-static path is detected all the time.
However, when the human target is walking, not always a
mobile path signal can be detected. We employ this unique
observation to identify the mobile paths. We take several mea-
surements within a short period of time. The merged-static
path is always detected on the AoA spectrum. However, due
to the small movements of human target, mobile paths may
not be detected at some positions as shown in Figure 6(a). By
checking the stability of the path on the spectrum at slightly
different locations, we can successfully differentiate mobile
paths with the merged-static path at a very high chance. With
20 measurements within 0.4 s, we can achieve a 98% identifi-
cation rate as shown in Figure 6(b).

Identify the Target Path

If there are more than one mobile paths, we need to identify the
mobile path which contains the target’s location information.
The shortest mobile path is the target path and we identify it by
comparing the ToA of each mobile path. There are particular
challenges to obtain the ToAs on commodity Wi-Fi cards.

First, nano-second level time synchronization between trans-
mitter and receiver is difficult [25]. A sampling frequency
offset (SFO) exists between a pair of transmitter and receiver
for each packet transmission. Furthermore, there is a random
packet detection delay (PDD) for each packet, which will in-
troduce another additional time variance in the ToA estimation.
Fortunately, the additional time introduced by SFO and PDD
are the same for all the paths for one transmission so we can
still employ the relative ToA to select the shortest one.

Unfortunately, the time delays introduced by SFO are differ-
ent across two packet transmissions for the same transmitter-
receiver pair. Meanwhile, the PDD is also random across
packets. As we only obtain one CSI reading for one packet
from commodity Wi-Fi cards, we need more than one packets
to provide us multiple CSI readings for MUSIC algorithm. To
include CSI from multiple packets for MUSIC processing, the
relative ToAs need to be aligned to a same point.

The additional phase at the k* subcarrier is —27f5(k —
1) Tdeiay, Where the Tge/4y is the sum of time delays introduced
by SFO (tsr0) and PDD (Tppp). The change is linear in fre-
quency domain if the phase is not wrapped between 0 and
27. Because all the RF chains on one Wi-Fi chipset are fully
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Figure 4. For clarity, we only show the AoA spectrum dimension. (a) With spatial smoothing to remove the coherence among signals, the two static
paths are separated on the spectrum; (b) Without spatial smoothing, the two coherent static paths are ‘merged’ into one path on the spectrum; (c¢) The
merged-static path and the mobile path are separated without spatial smoothing.

(a) All paths are static (b) A mobile path is at 45°

Figure 5. Benchmark experiments: static paths are merged into one
while static path and mobile path are separated
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Figure 6. (a) Mobile paths are not detected at some locations; (b) With
multiple measurements to check the stability, the mobile path can be
identified at a high rate.

synchronized, the additional phase introduced at a particular
sub-carrier is the same for all antennas. We apply a linear
fit method to remove this additional phase change and align
all the relative ToAs across packets to the same point [31].
After the ToAs are aligned, the CSI from multiple packets can
now be employed for the AoA and ToA estimations. Suppose
@;(m, k) is the unwrapped phase of the CSI at the & subcarrier
of the i"" packet received at m'" antenna, we can obtain the
optimal linear fit of the phase for the i packet as:

MK
%delay,i = argmin Z ((Pl(mvk) +2nfs (k - 1)5 + 8)2 (15)
14 m.k=1

The ©4e14y,; includes the time delay of the i packet and we
can remove it to obtain the modified CSI phase as @;(m,k) =
@;(m,k) + 27 f5(k — 1)%4elay;- In this way, we subtract the
random variance introduced by SFO and PDD for each packet
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and obtain the CSI values with aligned relative ToAs across
packets. For a single packet, this subtraction removes the same
amount of time delay across all paths so identification of the
shortest mobile path is not affected.

Area Coverage

Even when the target is not far away from the receiver, there
may not be reflection path from the target to the receiver at
some locations. However, one key observation is that, the
target may not be detected at one location, it may be detected
at a close-by location when the target moves just slightly.
Based on this observation, we propose a novel scheme to take
several consecutive measurements when the target is moving
and combine the data to significantly increase the detection
rate. In a very short time window, the position of a human
target changes very little which will not affect the localization
performance. If at least one measurement detects the target
path in the time window, we can obtain the target path for
localization. From our experiments, with only 3 measurements
within 0.04 s, the target path detection rate is close to 100%.
With this scheme, we can employ only two receivers to cover
a relatively large monitoring area with a high detection rate.
This sparse deployment property makes our method suitable
for real-life large scale deployment.

Target Localization

Once we have the target’s AoAs at multiple receivers, the
target’s location can be obtained. To remove the random
angle variance and improve location accuracy, we employ the
mean AoA value within a short time window for our location
estimation. Although our system is able to locate the target
with only two receivers, in general, the localization accuracy
gets improved with more receivers. Suppose R receivers could
be employed for localization in a monitoring area, the target
position can then be estimated as:

R
position = argmin Y (6; — 6;)? (16)
poim

where 6; is the angle of position p to the i receiver and 6; is
the estimated angle to the i'” receiver.

EVALUATION

Implementation
We employ GIGABYTE miniPCs equipped with Intel 5300
Wi-Fi cards as the transmitters and receivers. 3 antennas are at-
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Figure 7. Evaluation environments: (a) a meeting room of size 7 m x 7.4 m; (b) an office room of size 4.2 m x 4.5 m; (c) a lobby area of size 68.5 m?. The
blue pentagrams indicate the spots where the target spins and the red dotted lines are the walking routes.

tached at each receiver. We install the CSI tool [11] developed
by Halperin on these miniPCs to obtain the CSI information
for each received packet. The CSI tool provides CSI informa-
tion on 30 subcarriers. To reduce the amount of interference
brought to the ongoing Wi-Fi transmissions in the building,
our experiments are conducted in the 5 GHz frequency band
employing an unused 40 MHz channel. Our system can be
hosted on any channel in the 2.4 and 5 GHz bands with a
suitable antenna array. The CSI values are estimated from the
packet preamble part and our method has no requirement on
the packet type. Our system can work with beacon packet,
data packet or even dummy packet without a payload. Any
transmission in the air can be employed for our location esti-
mates and the system does not need to know the transmitters’
locations. One intuitive solution is to employ the Wi-Fi bea-
con packets already exist in the air so no extra packets are
needed to be transmitted. Therefore, our system has a mini-
mum impact on the existing Wi-Fi data communications. We
implement our system on a Dell M4800t laptop to process the
CSIs from receivers and estimate the moving target’s location.

We deploy our system in three typical indoor environments:
an office room, a meeting room and a lobby. Figure 7 shows
the floorplan of these three environments. In the office room
and meeting room, there are a lot of furniture and electrical
equipments so rich multipaths exist. We place the transmitter-
receiver pairs as shown in Figure 7. In the office room and
meeting room, we only deploy two receivers; in the lobby, we
deploy upto 4 receivers to evaluate the effect of deployment
densities. In each environment, we make the target spin slowly
at randomly selected spots and walk at different speeds to
evaluate the performance of our system. The human target
walks along the trace at a constant speed each time. We use
a video camera to record the whole process so the timestamp
when the target is at a particular position can be easily retrieved
to obtain the ground truth. We carefully measure the locations
of the receivers when we deploy them.

Evaluation methodology: Because the human target is a
polyhedron with a non-negligible size, it can’t be treated as
a point. For simplicity, we assume the human target has a
width of 50 cm. As long as the target estimation is within
this 50 cm range, we consider there is no localization error.
Otherwise, we calculate the localization error as the minimum
difference between the estimated location and this location
range. Similarly, the angle estimation error is the minimum
distance between the estimated angle and this angle range.
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Localization Performance

Localization accuracy

As shown in Figure 8(a) and Figure 8(b), with only 2 receivers,
we are able to achieve a median localization error of 40 cm
for spinning and 36 cm for walking in the office room. In the
meeting room, the median error increases slightly to 52 cm
for spinning and 62 cm for walking. The main reason for
slightly worse performance is the larger size of the meeting
room with similar angle estimation accuracy. In the lobby, the
median error is 60 cm and 62 cm respectively for spinning and
walking. The lobby and the meeting room have similar sizes.
Even though there are more objects in the meeting room with
richer reflection paths, they have similar localization errors.
This demonstrates that the static multipaths do not affect the
system performance much.

Impact of different deployment strategies

As shown in Figure 7(c), if we only employ two receivers to
locate the target, we have two different deployment strategies:
the two receivers are placed at the corners of different sides
(such as RX1_1-RX1_2 pair) or at the same side (such as
RX1_1-RX2_2 pair). Figure 8(c) shows the CDF plot of
localization error for the two deployment strategies. When we
put the two receivers at different sides, the median localization
error is 124 cm for spinning and 142 cm for walking. The
localization errors are much higher than 60 cm for spinning
and 62 cm for walking when the two receivers are placed at
the same side. When receivers are placed at different sides,
the two paths reflected from the target may have similar AoAs.
Thus, their intersection point will be out of the monitoring
area, deviating far from the ground truth. However, when
receivers are at the same side, this issue is greatly mitigated.
Note that, when there are more receivers, the performance
difference between the two strategies decreases because the
extra receivers will improve the overall performance.

Impact of deployment density of receivers

Although we could locate the moving target with only two
receivers, a higher accuracy can be achieved with more re-
ceivers. We deploy 4 receivers in the lobby area and evaluate
the impact of receiver density. Figure 9(a) shows the results:
with 2 receivers, the median error is 60 cm for spinning and
62 cm for walking. With 3 receivers, the accuracy is improved
to 46 cm for spinning and 50 cm for walking. With 4 receivers,
the accuracy is further improved to 40 cm and 41cm respec-
tively. So our system works well under sparse deployment
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Figure 8. (a) Cumulative distribution function (CDF) plot of localization error in three different indoor environments for spinning; (b) CDF plot of
localization error for walking; (¢) CDF plot of localization error for different deployment strategies with only two receivers.

which makes it an ideal candidate for large scale deployment.
More receivers can be employed for even better performance.

Impact of time window size

To remove the large random AoA variations, we average the
AO0A estimations in a time window. We vary the window size
to evaluate its impact on localization performance. As shown
in Figure 9(b), the best window size is 0.5 s and the median
error is 60 cm for spinning and 62 cm for walking. If we locate
the target without averaging, the error increases to around 1 m.
When we employ a window size larger than 0.5 s, the target’s
movement will bring in AoA errors and the localization errors
become larger again.

Impact of walking speed

We let the human target walk multiple times at different speeds
to evaluate the effect in localization performance. The target
walks at three different speeds: slow, normal and fast. The
slow speed is between 0.5m/s to 1m/s, the normal speed is
between 1m/s to 1.5m/s and the fast speed is between 1.5m/s
to 2m/s. As shown in Figure 9(c), the median localization
error is 61.2 cm for slow speed, 63.3 cm for normal speed and
61.4 cm for fast speed respectively. So the walking speed has
little effect on the performance of our method.

Impact of number of samples

Based on Equation 9, we need to employ multiple samples to
process the AoA. We vary the numbers of samples included
in the Dynamic-MUSIC method to evaluate its effect. Fig-
ure 10(a) shows the CDF of localization error with different
numbers of samples. With 10 samples, the median localization
error is 192 cm. When we increase the number of samples, the
error decreases to 71 cm for 20 samples and 80 cm for 40 sam-
ples. We achieve slightly better performance when we further
increase the number of samples. With only 20 samples, our
method has already achieved a good localization performance.

Angle estimation accuracy

Figure 10(b) shows the CDF of the target’s angle estimation
error. When the target is spinning, the median error is 4.6°.
When the target is walking, the median error increases slightly
to 4.9°. Note that the results are achieved with only 3 anten-
nas. We also implement the traditional MUSIC algorithm for
comparison. Limited by the number of antennas, traditional
MUSIC algorithm is only able to capture two paths. The me-
dian error of angle estimation of the target is 9.6° for spinning
and 9° for walking which are much larger compared to our
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Dynamic-MUSIC method. The AoA resolution of our method
is finer with ToA information from the second dimension.
When two paths are too close in space domain to be separated,
they may still be separated in time domain.

Sparse deployment coverage

The signal reflected from the human target is usually much
weaker compared to the direct-path signal. What is worse,
there may not be reflection path from the target to the re-
ceiver at some locations. We evaluate our scheme proposed
in Section 4.6 in this section. We move the target’s location
while keep the distance between the target and the receiver
unchanged. We test 100 target positions for each distance.
We check whether the reflected signal from the target can be
detected at the receiver. As shown in Figure 10(c), when the
target is 9 m away from the receiver, our method can achieve
a 69% detection rate with just one measurement. When the
target distance to the receiver is deceased, the detection rate
is higher. Then we take more than one measurements with
an interval of 0.02 s. As shown in Figure 10(c), with two
consecutive measurements, the probability of detecting the
target path at least once is around 90%. With 3 measurements,
the average detection rate is close to 100%. Also within a
short 0.04 s interval, the target’s location changes very little
and does not affect the localization performance.

LIMITATIONS

Human target is not moving: Our Dynamic-MUSIC method
works well with moving target. When the target is not moving,
we have a low detection rate. However, even if the target is
not moving, there are still subtle movements of the human
body including breath. With a much larger bandwidth in
802.11ac and more antennas attached to the commodity AP,
the resolution of our system can be improved significantly. We
leave this challenging problem as our future work.

Multi-target localization: Passive multi-target localization is
a well known challenging problem. Some previous works have
proposed schemes to address this problem. However, these
works either require dedicated hardware and special purpose
signals [18, 55], or have a low accuracy in localization and
the targets’ quantity estimation [26, 27]. To handle this prob-
lem, we need to differentiate the mobile paths from different
moving targets. The problem becomes even more difficult
when several targets are near to each other. With a higher
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density deployment, we believe our method is able to locate
sparsely-located multiple targets simultaneously.

Target path 100% blocked: The target path may be totally
blocked at one receiver. However, it is not likely for multiple
receivers to be blocked at the same time. In reality, we could
deploy more receivers to ensure at least two receivers could
capture the target path to mitigate the path blockage issue.

Automatic gain control: The AoA and ToA information are
estimated purely from the phase information at the receiver
side. So the automatic gain control and the transmission power
do not affect the performance of our system.

CONCLUSION

We propose a novel Dynamic-MUSIC method that leverages
the signal coherence, which is considered ‘bad’ in previous
MUSIC-based localization systems to identify the moving tar-
get’s AoA. Based on the proposed Dynamic-MUSIC method,
we design and implement a device-free localization system
on the commodity Wi-Fi cards without any offline training
required. MaTrack is able to achieve below 0.6 m median
error with only two receivers, each equipped with 3 antennas,
outperforming the state-of-the-art methods.
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SYMBOLS IN THIS PAPER
In order to make it easier to understand the math, Table 1 lists
symbols used in this paper.

Constant difference between two signals

Time-variant difference between two signals

A path signal that is received at time t

S(r Multipath signal vector at time t
n/ng/ny, The number of all/static/mobile path signals

0 Angle-of-arrival of a path signal
T Time-of-arrival of a path signal

D(0) Adjacent antennas’ phase difference

Q(1) Adjacent subcarriers’ phase difference
fs Adjacent subcarriers’ frequency difference

a(0)/a(0,7) | Steering vector of a path signal

A A matrix is composed of steering vectors

=
—

~
—|

Received signal on an antenna at time t

X(1) Received signal vector on an antenna array
N(1) Noise signal vector
R Correlation matrix of X(7)
I Identity matrix
o’ Variance of N(r)
M The number of antennas
K The number of subcarriers
e Eigenvector
E A subspace is composed of eigenvectors
o(m,k) The phase value of CSI of the k7 subcarrier

on the m™ antenna

Table 1. Symbols are used in this paper
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