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Chapter 7 )
Location Independent Vital Sign ek
Monitoring and Gesture Recognition

Using Wi-Fi

Daqing Zhang, Kai Niu, Jie Xiong, Fusang Zhang, and Shengjie Li

Abstract Recent years have witnessed the rapid progress of Wi-Fi based contactless
sensing. Compared to traditional wearable based approaches, Wi-Fi sensing does not
require the target to wear any sensors and is able to capture rich context information of
human targetin a non-intrusive manner. Though promising, one major issue hindering
the adoption of Wi-Fi sensing is the location and orientation dependence of the
performance, i.e., if the human target changes the location or orientation, the sensing
performance may degrade significantly. This chapter delves into this issue, analyzes
the factors affecting the sensing performance and presents solutions to addressing
this issue, moving Wi-Fi sensing one step closer towards real-life deployment.

Keywords Wi-Fi sensing - Unstable performance - Location and orientation
dependence - Fresnel Zone model - Virtual multipath - Multiple views
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7.1 Introduction

Wi-Fi infrastructure is ubiquitously deployed nowadays, which promotes Wi-Fi sig-
nals as a promising candidate for contactless human activity sensing. Wi-Fi sensing
has enabled a wide variety of applications, ranging from coarse-grained indoor local-
ization [2, 5, 14, 18] and gesture recognition [1, 9, 10, 22] to fine-grained vital sign
monitoring [13, 20] and keystroke detection [3]. The basic principle behind Wi-Fi
based contactless sensing is that Wi-Fi signals reflected from the human target vary
with human activities. Obvious variations can be observed in the Received Signal
Strength Indicator (RSSI) or Channel State Information (CSI) retrieved from com-
modity Wi-Fi devices when human activities occur near the Wi-Fi transceivers. The
induced Wi-Fi signal variations can thus be employed to infer the human activi-
ties [12, 15]. One key assumption for this to work is that there exists a one-to-one
mapping between each human activity and the induced signal variation. This map-
ping has been verified in constricted settings and a large range of gesture and activity
recognition applications have been proposed based on this assumption [1, 4, 16].
However, people soon observed a serious issue related to wireless sensing: the sens-
ing performance is very unstable. While highly accurate sensing can be achieved at
one location, the sensing performance can significantly degrade if the target moves
even slightly to a nearby location. This issue was theoretically analyzed by Zhang
et al. [13, 18, 21] in 2016 and the authors proposed the Fresnel Zone models to
characterize the relationship between the signal variations and target movements.
It was revealed that the mappings between the human activities and induced signal
variations do exist but unfortunately, they are location dependent. That is to say,
if the target moves to another location, the mapping changes accordingly, causing
performance degradation. It was shown in [13, 20, 21] that just a few centimeters
of target displacement can change the sensing performance completely.

In this chapter, we analyze the factors affecting the sensing performance and
reveal location and orientation are the key factors affecting the signal variations and
accordingly the sensing performance. State-of-the-art solutions proposed to address
this location and orientation dependence issue are introduced by employing small-
scale human respiration monitoring and large-scale gesture recognition as example
applications.

7.2 The Basics of Wi-Fi Sensing

In indoor environment, Wi-Fi signals travel from transmitter to receiver through
not only direct line-of-sight (LoS) path but also multipaths. Channel State Informa-
tion (CSI) is an important physical layer parameter which characterizes the propa-
gation of all these paths in the air. If the transmitted and received signals at carrier
frequency f and timestamp ¢ are expressed as X (f, ¢) and Y (f, 1), respectively, the
CSI H (f, t) satisfies the equation below:
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Y(f.r) = H(f.1) x X(f.1) (7.1)

If the Wi-Fi signals arrive at the receiver through M different paths, the overall
CSl is the linear superposition of the CSIs of all M paths:

M M
H(f,1)=e %Y Hy(f.0) = e ™) a,(f, 1ye™/ Crin/+00 (72)

m=1 m=1

where H,, (f, t) is the CSI of the mth path, a,, (f, t) is the signal attenuation, 25/, /A
is the phase change due to a signal propagation of path length /,, in the air, X is the
signal wavelength, 0, is the phase change caused by reflection, and 6, is the random
phase shift caused by Sampling Frequency Offset (SFO), Packet Detection Delay
(PDD) and Carrier Frequency Offset (CFO) [19].

Consider a typical scenario in Fig. 7.1, there is one pair of Wi-Fi transmitter and
receiver. Besides the human target, the wall also reflects Wi-Fi signals. The signal
paths can be grouped into two categories: static paths and dynamic paths. The LoS
path and the path reflected from the wall are static paths which keep unchanged.
The path reflected from the human target is dynamic path as the path length changes
with target movement. Without loss of generality, let us assume there is only one
dynamic path for easy illustration. As shown in the complex plane in Fig. 7.2, vector

Fig. 7.1 Wi-Fi signals arrive
at the receiver through LoS
path and reflection paths [7]
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H; represents the sum CSI of the static paths, while vector H; represents the CSI of
the dynamic path. H is the resultant vector which is the sum of the static vector and
dynamic vector. The amplitude of H can thus be denoted as:

|H|> = |H,|* + | Hy|* + 2| H,|| Hy| cos p (7.3)

where p is the phase difference between the static path vector Hy and dynamic path
vector H;. While the static vector! does not change, the dynamic vector’? changes
with target movement. However, within a short period of time, the amplitude of the
dynamic vector can also be considered as a constant. This is because within a small
time window, the displacement due to target movement is in the scale of millimeter
or centimeter while the distance between the target and the sensing devices is in
the scale of meter. The percentage of the path length change is thus very small
and the corresponding amplitude change of the dynamic vector is small enough to
be neglected. On the other hand, the phase change of the dynamic vector is large
and can not be ignored. Take the 5 GHz Wi-Fi signal as an example, a small target
displacement of one centimeter can induce a large phase change of 120°. Therefore,
when the target moves slightly from one location to another, the dynamic vector H,
rotates with respect to the static vector H; as shown in Fig. 7.2. The phase difference
change Ap due to the movement can be calculated as:

Ap = p1 — po =2mAl/L (7.4)

where Al is the length change of the dynamic path due to target movement. Note
that the phase difference change Ap is the same as the phase change of the dynamic
vector because the static vector remains unchanged.

From Eq. 7.3, the signal amplitude |H | is related to three parameters |Hs|, |Hy|,
and p. The amplitude of the static vector | H| is almost a constant. The amplitude of
the dynamic vector | H;| can also be viewed as a constant in a short time window and
thus the phase change of the dynamic vector is the only parameter changing. Two
signal variation examples are shown in Fig. 7.3. When the dynamic signal vector
rotates, the amplitude of the resultant signal varies like a sinusoidal wave. For one
full cycle of 360° phase rotation, a sinusoidal-like wave is obtained with one peak
and one valley.

2,

IThroughout this chapter, “static path vector”, “static signal vector” and “static vector” are used
interchangeably.

B

2Throughout this chapter, “dynamic path vector”, “dynamic signal vector” and “dynamic vector”
are used interchangeably.
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Fig. 7.3 Two signal variation examples: a the dynamic signal vector rotates 60° with respect to
the static signal vector; and b the dynamic signal vector rotates a full cycle of 360° with respect to
the static signal vector. The signal amplitude varies like a sinusoidal wave

7.3 Location Dependence Issue in Small-Scale Respiration
Sensing

A human respiration cycle contains inhalation and exhalation which expands and
contracts lungs respectively, as shown in Fig. 7.4a. The human body can be modeled
as a cylinder with slightly varying sizes during respiration. The chest displacement is
around 5 mm in the front dimension, 2.5 mm in the back dimension, and 1 mm in the
mediolateral dimension [6] during the respiration process, as shown in Fig. 7.4b. For
deep respiration, the chest displacement can increase significantly to around 10 mm
in the front dimension [8].

Inhalation‘Y Exhalation -
7/ -~
I
[y
Front /.Zt'
dimension N N Back
! ~. dimension
a : /'
4k :
f'w— . 'a'.f 5 .—_:_,_‘\ . :
A | i N Mediolateral |
d( : < D dimension l /
?&r’ . 4—{‘.,\ \\ :
g KR AN !
( | | | | \\\I\
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Fig.7.4 Modeling human respiration: a physiological behavior during respiration; and b the human
body is modeled as a cylinder with varying sizes during respiration
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For respiration sensing, the Wi-Fi signals get reflected from the human body such
as chest and received at the receiver. The chest displacement causes the reflected
signal to vary, and thus, the reflected signal is a dynamic path signal, as shown in
Fig. 7.5. Based on the amount of chest displacement, the path length change of the
reflected signal can be calculated, which can be further converted into the phase
change of the dynamic vector by applying Eq. 7.4. If the chest displacement is
Ad,, the corresponding path length change is roughly 2Ad, [11]. For a 5 mm chest
displacement, the phase change of the dynamic path signal is 60° for 5 GHz Wi-Fi
signals. This phase rotation of 60° induces sinusoidal-like signal amplitude variations
as shown in Fig. 7.5. The signal variations in solid and dotted lines correspond to
inhalation and exhalation respectively.

7.3.1 The Factors Affecting the Performance of Respiration
Sensing

Intuitively, a larger signal variation indicates a better sensing performance because a
small variation can be easily submerged in noise and becomes undetected. Thus, the
performance of respiration sensing is quantitatively related to the signal amplitude
variation. The amount of signal amplitude variation during the respiration process
can be calculated as:

|Hy|? — |Hol*
AlH| = [H(| - |Hy| = ——F— (7.5)
|Hy| + | Hol

where |H;| and |Hy| are the amplitudes of the resultant signal for inhalation and
exhalation, respectively. Placing Eq. 7.3 into 7.5, the signal amplitude variation can
be further expressed as:
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2|Hy||Hylcospy — 2| Hy||Hylcospo
|Hi| 4+ | Hol
—4|Hy||Hylsin(po + 32)sinL
|Hy| + | Ho|

AlH| =
(7.6)

As the dynamic reflected signal is much weaker than the static signal (|Hy| <
|H;)), |Hy| =~ | Hy| and | Hy| =~ | H;|. Thus, Eq. 7.6 can be approximated as:

. Ap . Ap
A|H| >~ —=2|Hy|sin(py + T)SIHT (7.7)
So the sensing performance can be qualitatively characterized by the following

equation:

. Ap. . Ap
n = ||Hylsin(po + T)sm7| (7.8)

Based on Eq. 7.8, the amount of signal variation is determined by three parameters:
(i) the amplitude of the dynamic vector |Hy[; (ii) the initial phase difference pg
between the static and dynamic vectors and (iii) the phase difference change Ap.
The corresponding interpretations of these three parameters are as follows:

e |H,| is the amplitude of the dynamic vector. When the target is further away from
the Wi-Fi transceiver pair, | H,| is smaller as the reflected signal needs to propagate
alonger distance in the air. A smaller | H;| corresponds to a smaller signal variation
and accordingly a poorer sensing performance. |H;| remains roughly the same
while conducting small-scale activity such as respiration.

e o is the initial phase difference between the static vector H; and dynamic vector
H;. A few centimeters of change in target location can result in a large change of
po, affecting the sensing performance of respiration.

e Ap is the phase difference change during the respiration process. It is determined
by the length change of the dynamic path which is related to the amount of chest
displacement. A larger chest displacement induces a larger path length change and
thus a larger Ap. For instance, a deep respiration induces a larger Ap and thus can
be more easily detected.

7.3.2 The Effect of Target Location

Based on the analysis in Sect. 7.3.1, a few centimeters of target location change leads
to a significant change of the initial phase difference py, affecting the sensing per-
formance. As shown in Fig. 7.6, a human target is located at four different locations.
At Location 1, pg = —30°, the respiration causes a small signal variation. When the
target moves to Location 2 with pp = 15°, the same respiration induces a much larger
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Fig. 7.6 The effect of target location on the performance of respiration sensing

signal variation. At Location 3, pp = 60°, an even larger signal variation is induced.
When the target moves further to Location 4 with py = 150°, a small signal variation
is induced and the sensing performance degrades.

7.3.3 The Effect of Target Orientation

During the respiration process, the amount of human body displacement in the front,
mediolateral and back dimensions are dramatically different. While the front chest
displacement is around 5 mm, the back displacement is only 2-3 mm. Hence, the
amount of signal variation changes with the target orientation with respect to the
Wi-Fi transceiver pair.

As shown in Fig. 7.7, the target is located at three different locations with sim-
ilar sensing performance when the target faces the LoS. However, when the tar-
get changes the orientation, the sensing performance varies differently. Specifically,
when the target chest is facing the LoS at Orientation 1, the largest signal variation
can be achieved. At Orientation 2 with the mediolateral dimension facing the LoS,
the smallest signal variation is induced. When the target back is facing the LoS at
Orientation 3, the body displacement in the back dimension is captured which is
smaller than that in the front dimension but still larger than that in the mediolateral
dimension.
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7.4 Location Dependence Issue in Large-Scale Activity
Sensing

Different from small-scale chest displacement during respiration, the displacement
for large-scale human activity is often in the scale of decimeter which induces a
much larger path length change. For respiration sensing, the phase rotation is less
than one cycle and the sensing performance is only related to the amount of signal
variation. For large-scale activities, the phase rotation can span multiple cycles and
the minor signal variation is not that important any more. The more important features
in differentiating these activities are the number of peaks/valleys and the intervals
between them. These features are the focus when dealing with large-scale activity
sensing. In this section, the factors affecting these features in large-scale activity
sensing are analyzed.

7.4.1 The Factors Affecting Large-Scale Activity Sensing

As shown in Fig. 7.8, when the target moves from location P; to P, the movement
distance Ad can be decomposed into the radial direction component and tangential
direction component. Note that if a target moves along the tangential direction, the
path length does not change. Thus, only the radial direction component can induce
path length change. To quantify the relationship between the target displacement and
the path length change, a coefficient r is defined. When the target is far away from the
sensing devices, one unit distance of displacement can induce a path length change
of two units and thus r = 2. The value of r decreases when the target moves closer
to the sensing devices. Therefore, the path length change Al can be denoted as:

Al =r-Ad-sinf (7.9)
where Ad is the target displacement, and § is the motion direction with respect to

the tangential direction. By placing Eq. 7.9 into 7.4, the phase difference change
induced by a large-scale activity can be expressed as:
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Fig. 7.8 The relationship
between target movement
distance and reflection path
length change
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Ap =27 -r-Ad - sinB/A (7.10)

From Eq. 7.10, the phase difference change for a large-scale activity is related to
three parameters: (i) the target movement distance Ad, (ii) the coefficient  and (iii)
the motion direction 8. The corresponding interpretations of these three parameters

are as follows:

e Ad is the distance of target movement. Apparently, a larger Ad induces a larger
phase change, leading to more cycles of signal variation.

e The coefficient r is dependent on the target location. Fig. 7.9 presents the r values
when the target is located at different locations. When the target is far away from
the transceiver pair, r is larger and can be approximated as 2. For the same amount
of movement distance, a further away target induces a larger signal path length
change.

e f is the direction of the target movement. For the same amount of movement
distance, if the target moves along the radial direction, sinf = 1 and the largest
number of signal vibration cycles are induced. In contrast, if the target moves
along the tangential direction, sinf = 0 and a minimum number of signal variation
cycles are induced.

7.4.2 The Effect of Target Location

For large-scale activities, when the target is at different locations, not just the ampli-
tude of the signal variations is different, the number of signal variation cycles is also
different, violating the one-to-one mapping between human activity and induced sig-
nal variation. As shown in Fig. 7.10, for the same movement distance, if the target is
located at Location 1, 7.5 cycles of signal variation can be observed. When the target
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Fig. 7.9 The heatmap for the value of coefficient r at different target locations with respect to the
transceiver pair
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Fig. 7.10 The effect of target location on signal variations for large-scale activities

is closer to the transceiver pair at Location 2, only 5.5 cycles of signal variation can
be observed. Of course, the signal variation amplitude is also different. When the
target is further away, a smaller variation is induced due to signal power loss.

7.4.3 The Effect of Motion Orientation

Besides location, the motion orientation also affects the number of signal variation
cycles. As shown in Fig. 7.11, when the target moves the same distance at different
directions, the number of signal variation cycles is dramatically different. At 90°
direction, 9 signal variation cycles can be observed. When the target moves at the
direction of 45°, only 6.5 cycles are induced. If the target moves at the direction of
0°, only 1.5 cycles are observed.
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Fig. 7.11 The effect of motion orientation on signal variations for large-scale activities

7.5 Improving the Performance of Respiration Sensing
with Virtual Multipath

As introduced in Sect. 7.3, the performance of respiration sensing is dependent on the
target location and orientation. At some locations, the performance can be poor and
these locations are called “blind spots” in literature [7]. To address this issue, virtual
multipath is introduced to improve the performance of human respiration sensing.
Based on the analysis in Sect.7.3.1, the initial phase difference py between the
dynamic vector and static vector is the key parameter affecting the performance of
respiration sensing. The value of py depends on the location of the target with respect
to the Wi-Fi transceiver pair. A straightforward method to improve the sensing per-
formance is to change the physical location of the target. However, this is not only
inconvenient but also intrusive. Changing the location by a precise amount is also
difficult to achieve in practice. It is highly possible the target may need to move
multiple times before a satisfactory sensing performance can be achieved. Niu et
al. proposed to inject a “virtual” multipath to tune the initial phase difference pg
without requiring the target to physically move [7]. By injecting a carefully designed
virtual multipath to change the static vector, the phase difference between the new
static vector and dynamic vector can be tuned close to 90° to maximize the signal
variation for best sensing performance. As shown in Fig. 7.12, after introducing a
static multipath vector H,,, the original static vector H; is added with the injected
multipath vector to form a new static vector Hy,,,,. The dynamic vector now rotates
with respect to the new static vector Hyy,,, as shown in Fig. 7.12b during the respi-
ration process. After the virtual multipath is injected, the initial phase difference p
becomes p,. Therefore, the key is to carefully design a multipath to tune the value of
0 close to 90° for best sensing performance [7]. Note that the phase of the dynamic
vector keeps changing and thus the best performance is achieved when the phase dif-
ference between the static vector and the middle point of the dynamic vector during
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(b)

Fig. 7.12 The effect of adding a virtual multipath [7]: a small signal variations are induced; and b
much larger signal variations are induced with a virtual multipath added
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Fig. 7.13 The effect of different virtual multipaths on respiration sensing [7]: a original signal
variation without multipath; b signal variation after adding Virtual Multipath 1; ¢ signal variation
after adding Virtual Multipath 2; and d signal variation after adding Virtual Multipath 3

the movement process is 90°. For simplicity and easy illustration, we just employ the
phase difference between the static vector and the initial dynamic vector to explain
the concept.

To demonstrate the effectiveness of the virtual multipath approach, the software-
defined radio platform WARP [17] is employed as the Wi-Fi transceivers to sense
human respiration. The transmitter and receiver are placed at the same height with a
distance of one meter between them. The transmitter sends out Wi-Fi signals in the
5.24 GHz frequency band using a 40 MHz channel. Figure 7.13a shows the original
signal variation for respiration at a “blind spot”. The original signal has a small
variation and the periodic respiration pattern can hardly be visualized. Figure 7.13b—
d show the new signal variations after three different virtual multipaths are added. The
much larger signal variations obtained demonstrate the effectiveness of employing
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Fig.7.14 The recorded signal variations for the hand gesture “up-down” in three cases: a at position
1 and orientation 90°; b at position 2 and orientation 90°; and ¢ at position 1 and orientation 0°

virtual multipath to improve the performance of respiration sensing. Among the three
virtual multipaths added, Virtual Multipath 3 achieves the best performance by tuning
the value of p{ to 90°. Thus, a virtual multipath can be used to address the location
dependence issue in respiration sensing and achieve robust performance.

7.6 Applying Multiple Views to Achieve Location
Independent Gesture Recognition

In this section, we introduce the concept of multiple views to address the location
dependence issue in large-scale gesture recognition. For Wi-Fi sensing, the reflected
signals from the target can be received at multiple receivers and these signals can be
considered as information from multiple views. We employ gesture recognition as
an example to illustrate how to extract features from multiple views to address the
location dependence issue in Wi-Fi sensing.

Gesture recognition plays an important role in human-computer interaction and
has become one of the most popular applications in wireless sensing. However, a
critical issue in Wi-Fi based gesture recognition is that the performance is very
unstable. If the target changes the location, the signal variation pattern changes
accordingly, breaking the one-to-one mapping between gestures and signal variation
patterns. As shown in Fig. 7.14, the same gesture performed at different locations
could lead to dramatically different signal variation patterns. The orientation also
affects the signal variation pattern, making this issue even more complicated.

Interestingly, though movement induced signal variations are different when the
target is at different locations or moves at different orientations, it is observed that the
relative movement is independent of location or orientation. For example, one target
can face any orientation and then “turn right”. The absolute movement directions are
different when the target faces different orientations. However, the relative movement
direction is always “turn right”, which is the same no matter which orientation the
target is facing. Thus, the same concept can be applied here and the relative motion
direction change can be employed as a location/orientation independent feature for
gesture recognition.
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Specifically, the target motion can be characterized by target velocity and the
velocity information can be calculated from the Doppler frequency shift. However,
the velocity obtained from the Doppler shift is just the radial velocity component,
because the tangential velocity component does not change the length of the reflec-
tion path. Thus, with one receiver, it is impossible to obtain the target velocity. By
including a second receiver and placing it at a carefully chosen location, this problem
can be solved because the missing tangential velocity component at the first receiver
can be obtained from the second receiver. Thus, signals collected from two views
are employed to extract features for sensing. Once the target velocity is obtained, the
motion direction change can be calculated and employed to recognize gestures and
this motion direction change feature is independent of target location and orientation.

As shown in Fig. 7.15, let us assume the radial velocity component for Receiver 1
is v, and the radial velocity component for Receiver 2 is v,,. The two receivers are
carefully deployed to make sure the two velocity components v,; and v, are roughly
perpendicular to each other. With this setting, the actual target movement direction
can be obtained as 6 = arctan(v,1/v,2). For a gesture with a displacement of tens of
centimeters, this perpendicular relationship can be assumed to be true throughout the
process. The relative change of the motion direction is a feature independent of target
location and orientation. Figure 7.16 shows the velocities obtained at two receivers
and the relative change of motion direction for the gesture of handwriting a “7” in
the air when the target faces two different orientations. We employ the normalized
Dynamic Time Warping (DTW) distance to characterize the similarity between two
data samples. The similarity value is between O and 1 with 1 representing two exactly
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Fig. 7.16 Velocities at two receivers, estimated motion direction, and relative motion direction
change when hand-writing “7” in the air at two different orientations

the same inputs. It can be seen in Fig. 7.16 that although the velocity patterns are
dramatically different, the relative motion direction changes are very similar with a
similarity index of 0.99, independent of gesture orientation.

7.7 Conclusion

In this chapter, we present one critical issue in wireless sensing: the sensing perfor-
mance is highly dependent on target location and orientation. Through theoretical
analysis and benchmark experiments, factors affecting the sensing performance are
identified. For small-scale human respiration sensing, virtual multipath is introduced
to address the location dependence issue and improve the robustness of respiration
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monitoring. For large-scale gesture recognition, the multi-view concept is introduced
to obtain a feature independent of target location and orientation, achieving one-to-
one mapping between gestures and signal features. We believe the solutions intro-
duced in this chapter are general enough to be applied to other sensing applications
using RF signals.
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