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RT-Fall: A Real-Time and Contactless Fall
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Abstract—This paper presents the design and implementation of RT-Fall, a real-time, contactless, low-cost yet accurate indoor fall
detection system using the commodity WiFi devices. RT-Fall exploits the phase and amplitude of the fine-grained Channel State
Information (CSI) accessible in commodity WiFi devices, and for the first time fulfills the goal of segmenting and detecting the falls
automatically in real-time, which allows users to perform daily activities naturally and continuously without wearing any devices on the
body. This work makes two key technical contributions. First, we find that the CSI phase difference over two antennas is a more
sensitive base signal than amplitude for activity recognition, which can enable very reliable segmentation of fall and fall-like activities.
Second, we discover the sharp power profile decline pattern of the fall in the time-frequency domain and further exploit the insight for
new feature extraction and accurate fall segmentation/detection. Experimental results in four indoor scenarios demonstrate that RT-fall
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Detection System with Commodity WiFi Devices

consistently outperforms the state-of-the-art approach WiFall with 14 percent higher sensitivity and 10 percent higher specificity on

average.

Index Terms—Fall detection, activity recognition, channel state information (CSI), WiFi, phase difference

1 INTRODUCTION

ALLS are the leading cause of fatal and nonfatal injuries

to elders in the modern society [1]. According to the
Centers for Disease Control and Prevention, one out of three
adults aged 65 and over falls each year [2]. Falls not only
bring a main threat to elders’ health, they account for a large
part of medical cost as well. For example, in 2,000 falls
among older adults cost the U.S. health care system over
$19 billion dollars and the number increased to $30 billion
dollars in 2010 [2]. Most elderly people are unable to get up
by themselves after a fall, studies have shown that the medi-
cal outcome of a fall is largely dependent on the response
and rescue time [3]. The delay of medical treatment after a
fall can increase the mortality risk in some clinical condi-
tions, half of those who experienced an extended period of
lying on the floor (>1h) died within six months after the
incident [4]. In addition to physical injuries and high medi-
cal cost, falls also cause psychological damage to elders,
which is termed as the fear of falling cycle by the fall
researchers [5]. The fear cycle refers to the fact that after a
fall, even without injury, elders become so afraid of falling
again that they reduce physical activities. This in turn
decreases their fitness, mobility and balance, leads to
decreased social interactions, reduced life satisfaction and
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increased depression. This fear cycle then increases the risk
of another fall [5].

For elders who live alone and independently, about 50 per-
cent of the falls occur within their own homes [1], thus timely
and automatic detection of falls has long been the research
goal in the assistive living community. Various techniques
ranging from wearable sensor-based, ambient device-based
to computer vision based solutions have been proposed and
studied [3], [6], [7], [8], [9], [10]. Wearable sensor-based
approaches were among the first techniques developed for fall
detection [11]. Since Lord and Colvin [12] proposed an accel-
erometer-based approach in 1991, numerous kinds of sensors
have been explored for fall detection in the past decades,
ranging from gyroscopers [13], barometric pressure sensors
[14], RFID [15], to the sensor-rich smart phones [16]. These
systems can only work when sensors are worn by the user.
However, the always-on-body requirement makes the subject
difficult to comply with, especially for the elders at home.
Ambient device-based approaches try to make use of ambient
information caused by falls to detect the risky activity. The
ambient information being used includes audio noise [7],
floor vibration [3], [6] and infrared sensing data [17]. In these
systems, dedicated devices need to be implanted in the envi-
ronment. However, the other sources of pressure or sound
around the subject in the environment account for a large pro-
portion of false alarms. Computer vision-based approaches use
cameras installed in the monitoring environment to either
capture images or video sequences for scene recognition.
Although the recent advances in infra-red LED and depth
camera like Microsoft Kinect [18], [19], have enlarged its
application scope (e.g., independent of illumination of lights
and can work even in a dark room), the privacy intrusion,
inherent requirement for line of sight and intensive computa-
tion for real-time processing are still open issues that need to
be addressed in the future [8], [10].
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Due to the limitations of the above-mentioned fall detec-
tion solutions, very few fall detection systems have been
widely deployed in real home settings so far [20]. In recent
years, the rapid development in wireless techniques has
stimulated the research in studying the relationship
between the wireless signal and human activities. In partic-
ular, the recently exposed physical layer Channel State
Information (CSI) on commercial WiFi devices reveals mul-
tipath channel features at the granularity of OFDM subcar-
riers [21], which is much finer-grained than the traditional
MAC layer RSS (Received Signal Strength). By exploiting
the amplitude and phase information of CSI across the
OFDM subcarriers and the diversity of CSI information
across multi-antennas in MIMO systems, significant prog-
ress has been made in applications in motion detection [22],
[23], lip language [24] and gesture recognition [25], [26],
vital sign monitoring [27], [28], and activity recognition [29],
[30]. The rationale behind all these research efforts is that
different human activities can cause different signal change
patterns, and activities can be recognized in real-time by
mapping the observed signal change patterns to different
human activities. With this motivation, in this paper, we
aim to investigate if real-time and automatic fall detection
can be achieved using cheap and widely deployed WiFi
devices at home, without requiring the subjects to wear or
carry any objects.

As far as we know, Wifall [29] is the first work using WiFi
commodity devices to detect fall. However, it makes two
assumptions: (1) the subject can only perform four kinds of
predefined activities (i.e., walk, sit, stand up, fall). (2) Activi-
ties can not be performed continuously. Obviously, both
assumptions are not realistic in real home settings. There-
fore, in this work, we intend to remove these two assump-
tions to detect the fall in the real settings, i.e., various daily
activities are performed naturally and continuously.

In order to automatically detect falls in real-time with
WiFi signals in the real settings, there are several challenges
that must be addressed. First, how the fall and other human
activities affect the amplitude and phase information of
CSI? Are there any specific features in the CSI of WiFi signal
streams which can characterize the fall and other human
activities? Second, as activities are performed continuously,
the boundary of the WiFi signal of subsequent activities is
not given. How to automatically and accurately segment
the corresponding fall and other activities in the continu-
ously captured WiFi wireless signal streams? Third, as there
are numerous daily activities, from the perspective of activ-
ity recognition, the problem space is large. Even if the activi-
ties are segmented out, differentiating the fall from all the
other daily activities is also challenging.

In our previous work [31], we observe that the phase dif-
ference over two antennas exhibits interesting characteris-
tics in the presence of fall and other human activities, while
the raw amplitude and phase information themselves are
not directly usable. Based on this observation, we proposed
a transition-based segmentation method leveraging the var-
iance of phase difference over a pair of receiver antennas as
a salient feature to automatically segment all the fall and
fall-like activities in the continuously captured WiFi wire-
less signal streams. Then we extracted features from both
the amplitude and phase information of CSI to separate the

fall from the fall-like activities. Leveraging the previous
work, we conduct intensive experiments using commodity
WiFi devices to empirically study how the amplitude and
phase difference of CSI change in both time and frequency
domain in the presence of various human activities. In addi-
tion to verifying that the phase difference is a more sensitive
base signal than the amplitude of CSI, we also observed that
the fall and fall-like activities are ended with a sharp power
profile decline in the time-frequency domain. Based on
these two insights, we design and implement our real-time
and non-intrusive fall detector, called RT-Fall. The fall
detection process performed by RT-Fall mainly contains
two-phases: First, we use the variance of phase difference as
a base signal and design a set of filtering and signal process-
ing techniques to robustly segment the fall and fall-like
activities in the continuously captured WiFi wireless signal
streams. After singling out the fall and fall-like human
activities in the wireless signal stream, we extract a set of
new features in both the time and frequency domain based
on the two insights to differentiate the real fall from the fall-
like activities using Support Vector Machine (SVM).

In summary, the main contributions of this work are as
follows:

1)  To the best of our knowledge, this is the first work to
deal with fall detection problem with commodity
WiFi devices in the real settings, i.e., detect the fall in
the condition that numerous daily activities are per-
formed naturally and continuously.

2) We are the first to identify the phase difference of
CSlI as a better base signal than amplitude for activity
segmentation and fall detection. By studying the
relationship between different human activities and
the variance of phase difference, we demonstrate its
effectiveness as a base signal to segment the fall and
fall-like activities in the continuously captured signal
streams.

3) We found the sharp power profile decline pattern of
the fall in the time-frequency domain and further
exploited the complementary characteristics of falls
in the time and frequency domain for accurate fall
segmentation/detection.

4)  We design and implement the real-time activity seg-
mentation and fall detection system, RT-Fall on com-
modity WiFi devices, with only one antenna at the
transmitter side, and two antennas at the receiver
side. Experiment results demonstrate that RT-Fall
can segment the falls in the WiFi wireless signal
streams with an accuracy of 100 percent and consis-
tently outperform the state-of-the-art fall detector
WiFall [29], with 14 percent higher sensitivity and
10 percent higher specificity on average.

The rest of the paper is organized as follows. We first
review the related work in Section 2 and then introduce pre-
liminaries in Section 3. In Section 4 we report the empirical
study results about the relationship between the WiFi CSI
information and the human activities, followed by the RT-
Fall framework design. Section 6 presents the system perfor-
mance evaluation results and then we discuss some unad-
dressed research issues in Section 7. Finally, we conclude
our work in Section 8.
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2 RELATED WORK

In this section, we review the related work from two per-
spectives: research on fall detection and research on WiFi
CSl-based activity recognition.

2.1 Related Work on Fall Detection

Fall detection has attracted a lot of attention in assistive liv-
ing and healthcare community for two decades. A great
number of fall detection techniques have been proposed
since the early 1990s. Noury et al. [9], Yu [10], Natthapon
et al. [20] and Spasova et al. [11] reviewed the principles
and approaches used in existing fall detection systems.
Roughly, the fall detection systems can be classified into
three broad categories: wearable sensor based systems,
ambient device based systems and computer vision based
systems.

Wearable sensor based fall detection systems were
among the first efforts about fall detection. They attempt
to detect falls leveraging sensors embedded in wearable
objects such as coat, belt and watch. Since Lord and
Colvin [12] proposed an accelerometer based approach in
1991, various kinds of sensors have been explored to
detect fall in the past decades. The widely used sensors
include gyroscopes [13], barometric pressure sensors [14],
RFID [15]. These detection systems can only work on the
premise that all the devices are worn or carried by the
subject during fall. Smart phone based fall detector is one
of the promising fall detection systems with great poten-
tial due to the popularity of sensor-rich smartphones [16].
While these solutions are appropriate for fall detection in
outdoor environment, the always-on-the-body require-
ments make the subjects difficult to comply with, espe-
cially for the elders at home.

The ambient device based fall detection systems intend
to detect falls in a non-intrusive way by exploiting the ambi-
ent information including audio noise [7], floor vibration
[3], [6], infrared sensing data [17] produced by a fall. The
rational behind these ambient device based fall detection
systems is that different human activities will cause differ-
ent changes in acoustic noise or floor vibration. These solu-
tions do not require the subject to carry or wear anything,
they are non-intrusive and more privacy-preserving than
computer vision-based systems. However, dedicated devi-
ces need to be installed in the dwelling environment. More-
over, false alarms are often incurred by other sources
causing the same effect. For example, an object fall might
also cause similar effect in vibration or sound as an elder’s
fall.

Computer vision based fall detection systems use cam-
eras installed in the monitoring environment to either cap-
ture images or video sequences for scene recognition. By
using activity classification algorithm, the fall activity is
distinguished from other events [8] ,[9] ,[10]. Recent advan-
ces in infra-red LED and depth camera like Microsoft
Kinect [18], [19], have enlarged its application scope (e.g.,
independent of illumination of lights and can work even in
a dark room). However, there are still a set of open issues
to be resolved, such as privacy concern, requirement for
line of sight and intensive computation for real-time proc-
essing [8] ,[10].

2.2 Related Work on WiFi-Based Activity
Recognition

The WiFi signal strength RSS has been exploited for indoor
localization for more than a decade [32]. However, only
recently research attempts have been made to use WiFi RF
signal for gesture and activity recognition [25], [29]. While
[25], [33] first explore and use WiFi RF signal to recognize
different body or hand gestures, they use dedicated instru-
ments to collect special RF signals, which are not accessible
with commodity WiFi devices. With the CSI tractable on
commodity WiFi devices [21], FCC [34] studies the relation-
ship between the number of moving people and the varia-
tion of CSI and thus achieves device-free crowd counting.
Liu et al. [27] and Liu et al. [28] exploit the CSI from com-
modity NICs to extract the human respiration and heart
beat rates in a controlled setting. Kosba et al. [22], Qian et al.
[23], Liu et al. [35] and Wunon et al. [36] employ RSS and
CSI information respectively to detect the human motion in
indoor environment. Sigg et al. [37] use software radio to
improve the granularity of RSSI values and consequently
improve the accuracy of activity recognition. E-eyes [30]
uses CSI amplitude histograms as fingerprints to recognize
nine different daily human activities. Moreover, Wang et al.
[24] and Melgarejo et al. [26] leverage WiFi devices
equipped with directional antennas to recognize lip and
gesture language respectively. However, all the above WiFi
based activity recognition work only deals with problems to
recognize activities from a predefined activity set. Unfortu-
nately, the fall detection problem is far more complex. Spe-
cifically, first, the fall should be singled out from various
daily activities which can not be predefined or collected for
training and testing one by one. In other word, the countless
human activities make the fall detection problem space very
large. Second, when various daily activities are performed
continuously, the boundary of the WiFi signal of subsequent
activities is not marked. Identifying the starting and finish-
ing point of interested activities for further training and
classification is challenging.

The first work using WiFi commodity devices to detect
fall is presented in [29], where it exploits the WiFi CSI infor-
mation for fall detection. But the work only makes use of
the amplitude information of CSI and simplifies the prob-
lem, i.e., the subject can only perform four kinds of prede-
fined activities. When the elders live normally in the home
environment with various activities naturally and continu-
ously performed, the solution will fail. In our earlier work
[31], we attempted to leverage both the amplitude and
phase information of CSI from commodity WiFi devices to
detect fall in real-time. In particular, we proposed to use the
phase difference over two antennas as the salient feature for
both activity segmentation and fall detection. Different from
our previous work, in this paper, we intensively study the
relationship between the amplitude, phase, and phase dif-
ference of the CSI information and the human activities,
respectively, and find that the phase difference is a more
sensitive base signal than amplitude or phase for activity
recognition. Further more, we discover the sharp power
profile decline pattern of the fall in the time-frequency
domain. By leveraging the findings about the phase differ-
ence and the power profile decline pattern, we design a set
of signal processing techniques to robustly segment the fall
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Fig. 1. WiFi signal propagation in indoor environment.

and a few fall-like activities from the other activities. Then
with only the fall and fall-like activities separated, we fur-
ther extract effective features from the amplitude and phase
difference of CSI, to distinguish the real fall from other fall-
like activities, making the real-time fall detection leveraging
the WiFi RF signal streams feasible in real home setting.

3 PRELIMINARIES

In this section, we first introduce the concept of Channel
State Information (CSI) in commodity WiFi devices, then we
specify the fall activity types targeted in this work.

3.1 Channel State Information in IEEE 802.11n/ac

In a typical indoor environment, as illustrated in Fig. 1, WiFi
signals propagate through the physical space via multiple
paths such as ceiling, floor, wall and furniture. As the physi-
cal space constrains the propagation of wireless signals, the
received signals in turn contain information that character-
izes the environment they pass through. If a person presents
in the environment, additional signal paths are introduced
by the scattering of human body. Then, the received signals
also convey information that characterizes the effects of
human presence in the environment. If we consider the
physical space (including ambient objects and human) as a
wireless Channel, the Channel State Information depicts the
effects when the wireless signals pass through this wireless
Channel. In frequency domain, the channel can be modeled
as Y = HX + N, where Y and X are the received and the
transmitted signal vectors respectively, NV denotes the chan-
nel noise vector and H is the channel matrix. The channel
matrix H is presented in the format of Channel State Infor-
mation. Specifically, current WiFi standards (e.g., IEEE
802.11n/ac) use orthogonal frequency division modulation
(OFDM) in their physical layer. OFDM splits its spectrum
band (20 MHz) into multiple (56) frequency sub-bands,
called subcarriers, and sends the digital bits through these
subcarriers in parallel. CSI reveals a set of channel measure-
ments depicting the amplitude and phase of every OFDM
subcarrier. CSI of a single subcarrier is in the following
mathematical format: h = |h|e’?, where |h| and @ are the
amplitude and phase, respectively.

If there is no one or no motion in the environment, the
channel is relative stable. However, as shown in red lines in
Fig. 1, along with the motion of a person, the scattered sig-
nals are changing, which results in obvious channel distor-
tion, involving both amplitude attenuation and phase shift.
Human activity can be recognized by mapping different channel
distortion patterns to corresponding human activities.

3.2 Fall Activity Types Targeted

There are many ways in which an elder can fall, and in this
work we aim to detect falls occurred in situations with
respect to two transition activities: 1): standing-fall refers to
the situation that the fall occurs when an elder transfers out
of a bed or chair, e.g., the elder may just stand up from the
chair and falls down; 2): walking-fall refers to situation that
the fall occurs while an elder is walking. According to a
study by SignalQuest on falls for the elderly, 24 percent of
falls occurred in the first case and 39 percent occurred in the
second [38]. Hence, we aim for 63 percent of the fall situa-
tions in this work and plan to address the other fall types
which occur while ascending or descending stairs or engag-
ing in outdoor activities, in future work.

4 EMPIRICAL STUDY

In this Section, we conduct intensive experiments using
commodity WiFi devices to empirically study how the
amplitude and phase information of CSI across the OFDM
subcarriers and multi-antennas change in the presence of
different human activities at indoor environment.

4.1 Human Activities and Amplitude of CSI

In this part, we explore the relationship between human
activities and the amplitude information of CSI. We first
present how the amplitude varies across different subcar-
riers and different streams respectively, and then we show
how the amplitude changes in the presence of different
human activities in Line-Of-Sight (LOS) and Non-Line-Of-
Sight (NLOS) conditions.

4.1.1  Amplitude Across Different Subcarriers

and Streams

As we only use one transmitter antenna and two receiver
antennas, CSI information we collected is further divided
into two wireless streams and thirty subcarriers in each
stream. In this study, we conduct experiments to see how
the amplitude varies across different subcarriers and differ-
ent streams respectively. We have the same observation as
[29] that human activities affect different streams indepen-
dently whereas affect different subcarriers in a similar way.
Furthermore, subcarriers among adjacent frequencies share
more similarities than those with larger frequency gap.
Based on these observations, we can average CSI samples of
adjacent successive subcarriers into one signal value to
achieve trade-off between computational complexity and
functionality. In the rest of this work, we will only show fig-
ures with one subcarrier in one stream.

4.1.2 Impact of Different Human Activities

We roughly divide human daily activities into two catego-
ries: immobile and motion activities.

Impact of immobile human activities. Immobile activities,
such as sitting, lying, and standing, intuitively result in rela-
tively stable signal change patterns as they only involve
tiny changes in human bodies (e.g., chest movement caused
by respiration, tiny body movement unconsciously).
Through extensive experiments, the results roughly fit the
intuition. Figs. 2a, 2c show the amplitude variance of three
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Fig. 2. CSI amplitude of human motion activities: (a) Sitting, (b) Lying, (c) Standing, (d) Lie down, (e) Upper body activities, (f) Pickup, (g) Squat,

(h) Walking, (i) Stand up, (j) Sit down, (k) Standing-Fall, and (l) Walking-Fall.

immobile activities, respectively. Interestingly, we have an
observation which was not mentioned in previous work
that the signal variance of the standing posture seems more
notable than that of other immobile activities like sitting
and lying. We also note that the amplitude variance of
standing reduces when the subject stands farther away
from LOS path. Hence, we doubt whether the amplitude
can reliably distinguish between the standing posture and
other immobile activities. This inspires us to conduct a com-
prehensive analysis on the impact of LOS/NLOS condition
before we can give the answer to this question.

Impact of human motion activities. Compared to immobile
activities which result in relatively stable signal changes,
motion activities, such as walking, lying down, sitting
down and fall, exhibit obvious signal variance as illustrated
in Figs. 2d, 21. To differentiate the fall from other activities,
we tried to find some unique features of the fall at first.
Unfortunately, neither the variance of the amplitude nor the
profile of the amplitude shows clear patterns to make
the fall distinguishable from other activities. Therefore, the
amplitude can only tell whether the human subject is con-
ducting motion activities or not.

4.1.3 Activities in LOS and NLOS Conditions

As daily activities can occur in different locations in the
indoor environment, we conduct activities in both LOS and
NLOS conditions to see their impact. As illustrated in Fig. 3,
the amplitude variance caused by human activities becomes
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Fig. 3. CSI amplitude of activities in LOS and NLOS conditions: (a) LOS
Walking-Fall, (b) NLOS Walking-Fall, (c) LOS Sit down, (d) NLOS Sit
down, (e) LOS Standing, and (f) NLOS Standing.

weaker from LOS to NLOS conditions. This is expected
because the signal propagation suffers from path loss [39].
For example, as shown in red lines in Fig. 1, along with the
motion of human body, the scattered paths from human
body keep changing. With the distance between human
body and LOS path increasing, those scattered power
decreases rapidly until they become too weak to be distin-
guished from the environment noise. Then we come up
with the following questions: how far away will the CSI ampli-
tude of the standing posture become indistinguishable from that of
other immobile activities? And how far away will this base signal
of motion activities become indistinguishable from that of immo-
bile activities?

We conduct extensive experiments in different rooms of
different sizes, finding that the exact results vary slightly
with respect to room settings and layouts. Using the settings
we adopt, the answer to the first question is around 2 min a
clear environment, and it drops to less than 1.5 m with a
1 m high wooden desk and an LCD desktop screen on it as
an obstacle between the LOS and human. Considering the
symmetry of both sides from LOS path, we find that the cov-
erage area is not enough for common rooms. Hence, we con-
clude that the ability of the CSI amplitude to distinguish the
standing posture from other immobile activities is quite limited
and unreliable in ordinary indoor living environments. The
answer to the second question is 5 m without obstacles from
LOS path and it drops to 4 m with the same wooden obsta-
cle. Considering the symmetry of both sides from LOS path,
the coverage area, even with 4 m, is big enough for a com-
mon living room. Hence, the ability of the CSI amplitude to dis-
tinguish the motion activities from immobile ones is enough and
reliable in common living rooms.

4.1.4 Fall in Different Scenarios

We then focus on falls, i.e., standing-fall and walking-fall,
occurred in different scenarios, including LOS and NLOS.
As illustrated in Fig. 4, the amplitude variance shows a clear
transition from a fluctuated state to a stable one among all
falls. This is expected because the fall often ends up with an
immobile posture (e.g., lying on the floor/sofa) which
results in a relatively stable signal change pattern. It seems
that we could use the transition as a feature for real time
activity segmentation. Unfortunately, as numerous human
daily activities can end up with certain kind of immobile activities,
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singling out the real fall from all of these activity combinations is
very difficult, or even impossible.

Previous work [29] did make use of the above feature
for real time activity segmentation, which was termed
as Anomaly Detection. However, we argue that it over-
simplifies the problem in two aspects, which limit its appli-
cability: First, the subject was assumed to stay in a controlled
environment where only a few predefined activities were per-
formed. Hence when various undefined human activities are
performed, the system will fail. Second, two predefined activi-
ties should be separated by an immobile activity in between. In
other words, the subject cannot perform activities in a natu-
ral and continuous manner, e.g., one cannot stand up from
the chair and walk, instead, he should stand up first, stand
there for a while, and then walk. The limitations of the CSI
amplitude motivate us to explore if we can find a better
base signal for activity segmentation and fall detection.

4.2 Human Activities and Phase of CSI

As human activities can cause channel distortion which also
leads to signal phase shift, so we follow the same logic of
the last section to study the relationship between human
activities and the phase information of CSI.

4.2.1 Phase Calibration

As mentioned in [40], the measured phase q§  of CSI of sub-
carrier f can be computed as follows:

(5]0 =¢;+ 2 frAt + B+ Zy,

where ¢ 7 is the true phase, At is the time lag at the antenna,
B is an unknown constant phase offset, Z; is some measure-
ment noise, fy is the carrier frequency offset at the receiver.
We find that the raw phases provided by commodity
Intel 5300 NICs are randomly distributed and not usable,
the reason lies in the term 27 f;At, since At is different across
subsequent packets. Recent work [41] shows that on a single
commodity wireless NIC, the RF oscillators are frequency
locked at startup. So the f; across different antennas on the
same NIC is actually the same value. This inspires us to
compute the phase difference A¢, between two antennas as:

App = A+ 2nfre + AB+ AZ,

where Ag; is the true phase difference, ¢ = Atl — A2 (Atl
and At2 are time lags at the antenna 1 and 2 respectively).
Ap is the unknown constant phase difference offset, AZ; is
still the measurement noise. If we put two receiver antennas
at the distance around %)\ from each other, ¢ indicates the

N Phase difference
ﬁr + Raw phase

+
- s #+J§¢¢+f+* F ot et SYE T T 4
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Fig. 5. Raw Phase versus Phase Difference without human presence.

propagation time of the distance difference Ad (which is
around I\sinf) between two antennas. Then ¢ can be
roughly estimated as follows: [42]

1/2Asin6 1
e ——F— < —,
T —2Tf

where )\ is the wavelength, f is the central frequency, ¢ is the
speed of light, T" is the sample interval which is 50 ns in
WiFi and 6 is the direction of arrival. As we select the WiFi
setting running on 5 GHz frequency, ¢ is thus approxi-
mately equal to zero. Thus, we get the measured phase dif-
ference A¢; as

A=Ay + A+ AZ;.

Fig. 5 shows the raw randomly distributed phase and the
phase difference in a no human presence environment
respectively. We can see that the randomly distributed raw
phase can be calibrated by conducting phase difference
over a pair of antennas. In the following sections, we con-
duct experiments to see the relationship between human
activities and the phase difference of CSI as we did for the
amplitude.

4.2.2 Phase Difference Across Different Subcarriers
and Streams

We have the similar observation for the phase difference as
for the amplitude that human activities affect different sub-
carriers in a similar way and adjacent subcarriers behave
similarly. From the CSI stream perspective, as the variances
of the phase difference across two antennas is the sum of
individual variance on each antenna,' which implies that
the phase difference is more sensitive to the environment
changes than the amplitude, thus the CSI phase difference
seems to be a better base signal compared to the CSI ampli-
tude for characterizing human activities.

4.2.3 Impact of Different Human Activities

Now we observe the phase difference caused by immobile
and motion activities, respectively.

Impact of immobile human activities. As illustrated in
Figs. 6a and 6¢, immobile activities such as sitting and lying,
result in relatively stable signal change patterns in time
domain. One new observation is that the CSI phase differ-
ence signal fluctuates with the tiny human body movement.

1. PhaseU [42] gives detail proofs about this conclusion, we refer
interested readers to that work for further information.
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Fig. 6. Phase difference of human motion activities: (a) Sitting, (b) Lying, (c) Standing, (d) Lie down, (e) Upper body activities, (f) Pickup, (g) Squat, (h)

Walking, (i) Stand up, (j) Sit down, (k) Standing-Fall, and (I) Walking-Fall.

Specifically, the CSI phase difference during standing shows an
obvious fluctuation compared to that caused by sitting and lying,
and we can see a clear difference between their patterns. As we
also note that the boundary blurs as a subject is standing far
away from LOS path. Hence, we cannot jump to a conclu-
sion that the phase can reliably distinguish between the
standing activity and other immobile activities.

Impact of human motion activities. Compared to immobile
activities, motion activities lead to obvious CSI signal fluctu-
ation in the time domain as illustrated in Figs. 6d and 6l.
Again, there is still no obvious pattern to differentiate the
real fall from other non-fall daily activities.

4.2.4 Activities in LOS and NLOS Conditions

Not surprisingly, as illustrated in Fig. 7, the phase variance
caused by human activities becomes weaker from LOS to
NLOS conditions. Now we answer the previous two ques-
tions with respect to phase difference.

With the setting we adopt, the answer to the first ques-
tion is around 3.5 m in a clear environment and it drops to 3
m with a 1 m high wooden desk and an LCD desktop screen
on it as an obstacle between the LOS and the human object
as we did in Section 4.1.3. Compared to the amplitude, it
seems that the CSI phase difference variance for the stand-
ing posture in both LOS and NLOS scenarios is amplified
and the difference between the signal pattern of the stand-
ing and that of immobile activities becomes clearer. As the
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Fig. 7. Phase difference of activities in LOS and NLOS conditions: (a)
LOS Walking-Fall, (b) NLOS Walking-Fall, (c) LOS Sit down, (d) NLOS
Sit down, (e) LOS Standing, and (f) NLOS Standing.

coverage area is enough for rooms with standard sizes, we
argue that the phase difference over two antennas proves to be a
robust base signal to distinguish between lying (sitting) and
standing. The answer to the second question is 6 m without
obstacles from LOS path but it drops to 5 m with the same
desk as an obstacle. Considering the symmetry of both sides
from LOS path, we conclude that the phase difference is also a
better base signal than the amplitude to distinguish the motion
activities from immobile ones in common living rooms.

4.2.5 Fall in Different Scenarios

As illustrated in Fig. 8, while most of the human activities,
such as walking, running, standing and falling, all lead to
obvious CSI phase difference fluctuation over time. Only
several immobile activities, such as sitting still and lying,
result in very steady and stable signal pattern over the time.
In our previous work [31], it was found that only when peo-
ple fall down, lie down and sit down, the variance of the
phase difference exhibits an obvious transition from the
fluctuation state to the stable one, and then the state transi-
tion of the CSI phase difference was used for real-time activ-
ity segmentation.

Through extensive experiments, the state transition of the
CSI phase difference variance proves to be a robust feature
in time domain to segment all the fall activities from the
continuously received CSI streams. However, many “in-
place” activities besides falling down, lying down and sit-
ting down might also cause the state transition of the CSI
phase difference, which leads to a lot of activities segmented
out. Here “in-place” means the subject is conducting certain
limb motions while lying or sitting. The transition happens
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Fig. 8. Fall in different Scenarios: (a) Standing-Fall in LOS, (b) Walking-
Fallin LOS, (c) Standing-Fall in NLOS, and (d) Walking-Fall in NLOS.
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Fig. 9. Spectrogram for a series of different activities.

when the subject finishes certain in-place activities (such as
eating, writing or making a phone call) and returns to the
immobile postures. As there are different kinds of in-place
activities, collecting all these activities for training and test-
ing one by one for classification is difficult.

4.2.6 Power Profile versus Daily Activities

In order to reveal more effective features for fall segmenta-
tion and detection, we further use the Short-Time Fourier
Transform to profile the spectrogram of the CSI phase dif-
ference signal corresponding to various daily activities. As
shown in Fig. 9, it is interesting to see that different activities
have different power profiles and the frequency range con-
tributing to the power profile exhibits certain patterns. Spe-
cifically, we notice that:

1)  The immobile postures such as sitting still (0-4 s, 11-
14 s, 27-30 s) and lying still (68-72 s) have a weak
power profile, as there is no any obvious body
movement.

The “in-place” activities such as making a phone call
while sitting (4-10s) and standing (36-41 s) have a
mild power profile contributed mainly by the low
frequency components (<5Hz), which are generated
mainly the limb movement.

All the motion activities such as walking (17-21 s, 33-
36 s, 41-46 s, 61-65 s), standing up (14-17 s), jumping
(63-61 s), turning around and sit down (21-26 s), and
falling (66-68 s) have a strong power profile with
both low frequency [0, 5 Hz] and high frequency
components (>5 Hz), which are generated by both
limb and torso movement.

While the falls and sitting/lying down activities
show a sharp power profile decline from high fre-
quency to low frequency components (68 s, 25 s), the
“in-place” activities won’t cause such a sudden
power profile decline as the power profile of “in-
place” activities mainly lies in the low frequency
range (<5 Hz).

Hence, by detecting the state transition of the CSI phase
difference variance along with the sharp power profile
decline pattern, we can robustly rule out the “in-place”
activities but segment only the fall and a few other non-fall
activities (i.e., lying down and sitting down). We refer those
few other non-fall activities as fall-like activities.

Zooming in the power profile of the fall and fall-like activi-
ties, it is noticed that while the fall and fall-like activities both
end up with a sharp power profile decline, the falls often
exhibit even a sharper power profile decline pattern than the
fall-like activities. For example, as shown in Fig. 9, comparing
the power profile before and after the ending point of the fall

2)

3)

4)
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(at 68 s), and that of the sit down activity (at 25 s), we can see
that the fall shows an obvious sudden power decline from
high frequency to low frequency components, whereas the sit
down activity only shows a mild one. This unique characteris-
tic of fall is probably caused by the uncontrollable state of the
subject, because when a person falls, she would lose control of
the body and experiences an accelerated moving stage before
hitting the floor. As the subject hits the floor, the moving
speed of the body would change from high to zero, without a
controlled de-accelerating stage like other fall-like activities
such as sitting down.

However, we also notice that this gap becomes closer
with the speed of the fall-like activity increasing, i.e., the
power profile decline pattern of some quick fall-like activi-
ties looks similar to that of the fall. In particular, when the
speed of the fall-like activities increases to a comparable one
with that of the falls, we can no longer tell the difference
only by comparing the power profile decline pattern.

4.3 Summary

In this section, we conduct extensive experiments to study
how the amplitude and phase difference of the CSI change
in the presence of different human activities at indoor envi-
ronment. As previous work only exploits the amplitude
information, we start from that and find that the CSI ampli-
tude can only tell whether a subject is performing motion
activities or not. This can be useful for activity segmentation
with simplified assumptions made in previous work [29].
However, it can not work well when various daily activities
are performed naturally and continuously. The limitations
of the CSI amplitude motivate us to explore the phase infor-
mation in human activity recognition. Unfortunately, we
observe that the raw phases provided by commodity WiFi
devices are randomly distributed and thus not usable. After
analyzing the reason, we take the phase difference across a
pair of receiver antennas for phase calibration. Interestingly,
we observe that the phase difference is more sensitive than
the amplitude, further more, it can distinguish standing
from other immobile activities such as sitting and lying.
Based on this observation, our previous work proposed a
simple transition based segmentation method, expecting to
single out only the fall and a few fall-like activities (i.e., sit-
ting and lying) in the continuously captured CSI streams.
However, we found that some “in-place” activities may also
be segmented out as fall-like activities, which lead to diffi-
culties in accurate fall detection. Fortunately, we find the
sharp power profile decline pattern, which is always associ-
ated with fall and fall-like activities, but not with “in-place”
activities. Furthermore, we also see that the power profile
decline patterns of the fall and fall-like activities often look
quite different. Thus, by combining the state transition of
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the CSI phase difference variance with the sharp power pro-
file decline pattern, we not only resolve the “in-place” activ-
ity issue for segmentation, but also provide new clues for
fall detection.

5 FRAMEWORK & METHODOLOGY

Our proposed real-time and contactless fall detector, RT-
Fall, consists of three functional modules: signal preprocess-
ing, fall-like activity segmentation and fall detection. As shown
in Fig. 10, the system takes the CSI signal streams as input,
which can be collected at the receiver side using two
receiver antennas of a commodity WiFi device (e.g., Intel
5300 NIC). Each CSI signal stream contains CSI readings
from 30 subcarriers on a wireless stream and totally two CSI
streams are collected in the experiment between one trans-
mitter antenna and two receiver antennas. The CSI sam-
pling rate is set to 100 pkts/s as [29]. The system can take
advantage of CSI measurements from existing traffic across
these links, or if insufficient network traffic is available, the
system might also generate periodic traffic for measurement
purposes.

5.1 Signal Preprocessing

The goal of signal preprocessing is two-fold: 1) dealing with
the uneven arrival of packets caused by the bursty Wi-Fi
transmissions to make the signal stream continuous for fur-
ther signal processing; 2) filtering out signal noises which
won’t contribute to fall segmentation and detection. The
above two goals are achieved by applying the following
two techniques: interpolation and band-pass filtering.

5.1.1 Interpolation

Wi-Fi is a shared channel, where multiple devices use ran-
dom access to share the medium. This results in the
received packets that are not evenly spaced in time domain.
Two problems may occur if the arrival of packets is not
evenly spaced: 1) the sampled CSI readings during the fall
may not be continuous, which makes it difficult for feature
extraction; 2) unevenly spaced samples in time domain pre-
vent Time-Frequency analysis to obtain the spectrogram. To
get evenly spaced samples, we adopt the 1-D linear interpo-
lation algorithm as suggested in [43] to process the raw CSI
readings.

5.1.2 Band-Pass Filter

The interpolated CSI signal stream is then fed into a band-
pass filter to further rule out irrelevant signal frequency
components. As the speed of chest movement caused by
respiration or slight body movement are relatively low com-
pared to that of the fall, the signal changes caused by these
motions mainly lie in the lower frequency range, often

within [0, 4 Hz]. Furthermore, these body motions are
embedded in all the human activities. Hence, it is reason-
able to conduct a band-pass filter to filter out the signal com-
ponents which are below the frequency of 4 Hz. Through
experiments, we find the frequency range that can filter-out
the non-relevant activities yet well characterize the fall and
fall-like activities lies in [5, 10 Hz].

5.2 Activity Segmentation

The main function of the activity segmentation module is to
single out the fall and fall-like activities from the continu-
ously received CSI streams. It consists of two steps: in step
one, the finishing point of the fall or fall-like activities is
identified automatically by processing the variance of CSI
phase difference; then in step two, the starting point of the
fall or fall-like activities is determined by selecting a proper
trace back window size from the finishing point.

5.2.1 Identify the Finishing Point of Fall or Fall-Like

Activities

In the empirical study section, it was found that the state
transition of the CSI phase difference variance is a robust
base signal to detect the fall and fall-like activities (i.e., lying
down, sitting down). Based on the two observations
described previously, we propose a two-phase segmentation
approach to separate the fall and fall-like activities from
other activities in the continuously received CSI streams.

In phase one, we use a threshold-based sliding window
method to determine if the raw phase difference signal and
the band-pass filtered phase difference signal are in the fluc-
tuation state or stable state. This process consists of three
steps: First, we collect the two signal streams in stable state
(e.g., lying/sitting in LOS path) across multiple sliding win-
dows off-line and calculate their mean p and the normal-
ized standard deviation o, respectively; Then, we determine
the threshold value § for both signal streams as: i + 60 < 6.
In the last step of phase one, we acquire the two signal
streams in a sliding window on-line as shown in Fig. 11b
and see if they are in the fluctuation state or stable state, by
comparing the mean value in the sliding window with the
threshold é. If the mean value is smaller than §, the signal is
said to be in the stable state, otherwise it is in the fluctuation
state.

In phase two, we detect the transition from the fluctua-
tion state to stable state for both the raw phase difference
signal and the band-pass filtered phase difference signal,
and determine the finishing point of the fall and fall-like
activities by checking if both signals enter the stable state.
The process contains two steps: In step one, we keep track-
ing of the state of two signals and checking if there is a
transition occurring from the fluctuation state to stable
state. When such a transition happens, we mark the time
t1 as shown in Fig. 11b and start monitoring the state of
the other signal. If the other signal also enters the stable
state within a timelag At from t1, we mark the instant
t2 = t1 4+ At as the finishing point of the fall and fall-like
activities.

The rationale behind detecting the two signal state transi-
tions for the fall and fall-like activity segmentation is that
we detect the CSI phase difference transition as the first
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Fig. 11. Fall and fall-like activity finishing point identification: (a) Phase difference across a continuously performed activities. (b) The corresponding
sliding standard deviation of (a). §1 and §2 are the thresholds for the raw and band-pass filtered phase difference, respectively.

criteria and then filter out the “in-place” activities by check-
ing the band-pass CSI phase difference variance. If we only
track the state transition of the raw phase difference vari-
ance as we did in our previous work [31], the “in-place”
activities may also be segmented out as fall-like activities.
As shown in the grey-dashed line of Fig. 11b, when the sub-
ject stops making a phone call, the raw phase difference
shows a state transition (at 9 s), which meets our previous
segmentation criteria. If we only track the state transition of
the band-pass filtered CSI phase difference variance, we
will no longer distinguish the lying (sitting) from standing,
as the energy-band caused by standing activity lies in the
same frequency range as for the in-place activities. As
shown in the solid-blue line of Fig. 11b, when the subject
finishes walking and then stands still, the band-pass filtered
phase difference shows a transition (at 36 s) from the fluctu-
ation state to stable state. As the fall is always accompanied
by a CSI phase difference state transition and a sharp power
profile decline where the energy from the high frequency to
low frequency components all drops within a very short
period of time, which inspires us to track the state transi-
tions of both signals as well as the time lag. In particular,
the shorter the At is, the sharper the power profile decline is.

As shown in Fig. 11a, we depict the CSI phase difference
of a series of activities performed continuously and label
the corresponding activities. While Fig. 11b shows the fall
and fall-like human activity finishing point identification
results based on our two-phase segmentation approach. It
can be seen that only the fall and fall-like activities are iden-
tified, while other activities such as making a phone call,
standing up and walking are left out.

5.2.2 Determine the Proper Trace Back Window Size
for Fall-Detection

Based on the CSI phase difference state transition detection,

we can identify the finishing point of fall and fall-like activi-

ties in the continuously captured WiFi signal streams. To

differentiate the fall from fall-like activities, we need to

decide the proper trace back window size to collect training
data samples for accurate fall detection. The window sizes
tested in previous fall detection work were ranging from
0.32 s [44], 1 s [45], to 10 s [46] according to the adopted sen-
sors and fall detection methods. Considering the duration
and characteristics of the fall and other fall-like activities in
time domain, we perform intensive experiments to choose
the best window size with trial-and-error method. It was
found that the best window size is three seconds, compos-
ing a two-second signal segment before the finishing point
and a one-second signal segment after, representing the
whole segmented activity stream.

5.3 Fall Detection

After determining the starting and finishing point of the fall
and fall-like activities, only the CSI phase difference and
amplitude of those activities are singled out. The goal of the
Fall Detection module is to separate the fall from fall-like
activities.

5.3.1 Feature Extraction

Through extensive study, we extracted the following eight
features from the real time captured CSI streams for activity
classification: (1) the normalized standard deviation (STD)
of CSI, (2) the median absolute deviation (MAD), (3) the off-
set of signal strength, (4) interquartile range (IR), (5) signal
entropy, (6) the velocity of signal change, (7) the TimeLag,
(8) the power decline ratio (PDR). As the first six features
are used and explained in [29] for activity classification,
here we only elaborate the two new features.

Both TimeLag and PDR are proposed based on the obser-
vation that the fall and fall-like activities are different from
the signal power profile perspective. TimeLag characterizes
the time delay of the state transition point between the
band-pass filtered and the raw phase difference as shown in
Fig. 11b, we can see that the time lag for the fall is usually
much shorter than that of the sit down activity. If we com-
pute the one-second accumulated power before and after
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the finishing point, then the PDR is defined as the power
decline ratio which is the one-second power loss divided by
the one-second accumulated power before the finishing
point. PDR is computed with the following mathematical
formula:

PDR — ZEZIL1 Z?l:f{ et’fa)f B Zjilf ;}L:fl 6t’fwf ,
Yhoi, Sfp ensos

where 7 is the finishing point, {_, is the instant of one second

before ¢ and the i, is that of one second after . f; and f;

refer to the frequency range from [0, 50 Hz]. e, s is the power

strength of a specific frequency f at a specific time ¢. o is

the weight vector for each frequency f.

Different from WiFall [29] that only extracts features
from the CSI amplitude information, we extract the first six
features from both CSI amplitude and phase difference, and
extract the two new features from phase difference only. They
together constitute the input of the SVM Classifier.

5.3.2 SVM Classifier

To detect the fall among the segmented activities, the v-SVM
classifier [47] is applied using the features extracted above.
All the samples are divided into objective class (i.e., the fall)
and non-objective class (i.e., fall-like activities). To solve the
non-linear classification problem, it maps input samples
into a high dimensional feature space by using a kernel
function and finds the maximum margin hyperplane in the
transformed feature space. The SVM classifier requires a
training dataset and test dataset. In the process of classifica-
tion model construction, fall and fall-like activities are seg-
mented and labeled in the continuously captured WiFi
wireless signal streams in the activity segmentation phase.
Then the extracted features along with the corresponding
labels are fed into the SVM classifier to build the classifica-
tion model. In the process of real-time fall detection, the
classification results along with the data samples will be
recorded. With the user feedback, the wrong classification
results will be re-labeled correctly and the model updating
process will be triggered in time to update the classification
model. We create the v-SVM classification model by utiliz-
ing LibSVM [48] with the Gaussian Radial Basis Function
(RBF) kernel chosen and set the parameter v to be 0.5, which
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Fig. 13. User interface.
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indicates the upper bound on the fraction of training errors
and the lower bound of the fraction of support vectors, leav-
ing other parameters as default.

6 EVALUATION

In this section, we present the implementation and evalua-
tion results of our RT-Fall system using commercial off-the-
shelf WiFi devices.

6.1 Experimental Setups

We evaluate our RT-Fall system using an 802.11n WiFi net-
work consisting of one or more off-the-shelf WiFi devices
(laptop or mini-pc) and a commodity wireless access point
(i.e., TP-Link WDR5300 Router with one antenna running
on 5 GHz). The laptop/mini-pc is equipped with an Intel
WiFi Link 5,300 card for measuring CSI [21] and with two
internal antennas. The packet transmission rate is set to
100pkts/s.

We conduct experiments in four different environments
to show the generality of our system. The experimental
setup and settings in these environments are shown in
Fig. 12. The first test environment (i.e., office) has the size of
about 3m x 4m with one sofa, two tables and one bookcase
(see the photo inside Fig. 13); the second test environment is
an apartment with two bedrooms and one living room,
equipped with a group of sofas, two tables and two beds;
the third test environment (i.e, meeting room) is about
6m x 6m with a long meeting table and dozens of chairs
around, the fourth one is a big hall with the size of
12m x 6 m.

6.2 Dataset

We recruit 6 volunteers (five male and one female; age: 21-
32 years; height: 1.6-1.83m; weight: 61-82 kg) to perform var-
ious daily activities in the four test environments over two
months. Each data record consists of a continuous stream of
activities, mixing the fall, fall-like and other daily activities.
These activities include the specified Activities of Daily Liv-
ing(ADL) summarized in [20] (e.g., standing, walking, run-
ning/jogging, jumping, sitting down, getting up from
chair/bed, lying down, picking up object, ...) and other com-
mon activity types (e.g., answering phone, eating, perform-
ing exercise like push-up). We let the subjects to fall
naturally but provide a mattress to protect the subjects from
being injured. Specifically, the subjects performed the fall
according to their experiences to simulate the sudden loss
of balance, including forward, backward, sideward and
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shown in Fig. 13, where the recorded video, the amplitude T = > a5

and phase difference of CSI, the segmented activity from
CSI stream, and the detection results are updated on-line in
real-time. When the system is started, a subject can perform
any activities naturally and continuously,” and the system
will automatically segment CSI streams and report the seg-
mentation/detection results in real-time on the user inter-
face. Based on the recorded activity video and detected
results, it is very easy for the user to report the test results,
ranging from the number of falls performed and detected,
to the fall-like activities performed and detected. In all the
following sections, we let subjects to perform activities, and
ask a separate student to record the full experiment results
for performance evaluation purposes.

6.3 Baseline Method and Performance Metrics
In the experiments, we use the state-of-art fall detector
WiFall proposed in [29] as the baseline. Since WiFall cannot
segment the fall and other daily activities reliably, we thus lever-
age our proposed method to segment the fall and fall-like activities,
subsequently we compare its activity classification perfor-
mance with that of our approach using our dataset. We use
the following two standard metrics for performance evalua-
tion—sensitivity and specificity. The confusion matrix is
shown in Fig. 14 to define sensitivity and specificity.

Sensitivity is defined as the percentage of correctly
detected falls: sensitivity = TP/(TP + FN)

Specificity is defined as the percentage of correctly
detected non-fall activities: speci ficity = TN /(TN + FP).

6.4 System Performance and Number of
Participants

As different people perform activities in different ways, for
example, some sit down faster, while some fall slower, thus
we design a set of experiments in the office room to see how
many subjects’ training data is sufficient for obtaining stable
and satisfactory test results, through testing the system per-
formance with increasing the number of participants
involved. Considering that the activities can occur in differ-
ent places and from different directions as shown in
Fig. 12a, we ask the participants to evenly cover all the situa-
tions when they perform experiments.

As shown in Fig. 15a, the experiments consist of two
phases: training data collection phase and testing phase. In
the training data collection phase, we collect the training data-
set by increasing the number of participants involved, each
subject conducts 100 falls and fall-like activities respectively,

2. A demonstration video has been recorded and uploaded to You-
Tube (please see: https://youtu.be/WgTnKjr5xow) and Youku (see:
http://v.youku.com/v_show/id XMTQINDglODIyOA==html?
from=s1.8-1-1.2) to show how various activities and falls are conducted
in the natural setting.

(a)
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Fig. 15. System performance and Number of Participants: (a) Experiment
design. (b) Performance evaluation with different number of people.
M{S}— > z means building the model M{S} from the training data of
the people set S to evaluate the performance with the dataset of user .

and the system uses the training data from the subject set .S to
build the model M{S}. In the testing phase, each subject x
conducts 40 falls and 80 fall-like activities respectively to eval-
uate the performance using the model built from the training
data of the subject set S, and the evaluation results of each
experiment group are shown in Fig. 15b, where the classifica-
tion model M is built with the training dataset and the tests
are done using those models for different number of partici-
pants. For example, at the beginning, as the training data set is
empty, we collect training data from the first subject a to build
a model M{a} (see first row in Fig. 15a), which refers to the
model built with one participant’s dataset (user a performed
100 falls and 100 fall-like activities, spending 6 hours in 2
days’ time), and then test the performance on subject a using
model M{a} from the training data of himself (see second
row: M{a} — a). Then the second subject participates in the
experiments to evaluate the performance using the model
M{a} (see third row: M{a} — b) to see if we can get consis-
tent performance as the first subject. If not, we go on collecting
training data from the second subject (see fourth row) to
increase the training data set and build the model M{a,b},
and so on so forth, until we get roughly consistent perfor-
mance with the smaller training dataset.

According to Fig. 15b, M{a} — a has the best result, but
it lacks generality to detect falls of other people accurately;
with the number of participants increasing to three, the per-
formance obtained with the model built from three subjects’
training data tends to converge, which is a little lower than
that of M{a} — a. This is expected because M{a} — a cor-
responds to a personalized model, whereas M{a, b, ¢} corre-
sponds to a generalized one that is trained for more people.
Furthermore, according to the videos recorded, in the train-
ing and testing phases, all the 620 falls are 100 percent seg-
mented out. Averaging the performance of the last three
experiment groups, ie., M{a,b,c} — d,e, f, we achieve
93 percent of sensitivity and 89 percent of specificity in the
office room. In the rest of this section, we use the generalized
model built from three subjects’ training data for further
evaluation.
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Fig. 16. Performance comparison in different rooms: (a) Experiment
design. (b) Performance results.

6.5 System Evaluation and Comparison
In this part, we first compare the performance of RT-Fall
with that of the baseline method WiFall [29] in four different
test environments, in terms of sensitivity and specificity.
Then, we evaluate the system robustness of RT-Fall system
with respect to various environment changes.

6.5.1 Performance Comparison

We design experiments in four test environments as shown
in Fig. 16a to compare the performance of RT-Fall with that
of the baseline method WiFall [29]. As we have already col-
lected training and testing data in Section 6.4 in the office
room, we spent two weeks in an apartment, meeting room
and the hall again with the three students (a,b,c) in the train-
ing data collection phase. In the office room and the meeting
room, as we only need one AP and one WiFi device to cover
the whole area, two classification models were built for
each room, one is based on our approach, the other is based
on WiFall. However, in the apartment and the big hall, we need
one AP and two WiFi devices to cover the whole area as shown
in Fig. 12. Specifically, in the apartment, we train three clas-
sification models from the training dataset, each model cor-
responding to one room. To make the three models work
together, the CSI captured in two WiFi devices were syn-
chronized to a central sever. As each room has its own
model, the system needs to track which room the subject is
in to select the proper model to use. Actually it is quite sim-
ple for RT-Fall to detect this. For example, if the subject is in
the living room, the CSI phase difference signals in both
WiFi devices are in unstable state. However, if the subject is
in one of the two bedrooms, only the WiFi device closer to
the subject has unstable CSI phase difference signal while
the other one has stable signal. In the hall, as the area is too
large for only one AP and one WiFi device to cover, we
deploy two WiFi receiving devices. Again, two classification
models were built for two separate areas and the CSI cap-
tured in two WiFi devices were synchronized to make the
final decision. As each area has its own model, the system
also needs to track which area the subject is in. RT-Fall lev-
erages the fact that when the subject is close to one WiFi
device, the standard deviation of the CSI phase difference
in this WiFi device will show severer fluctuation than that

= Sensitivity = Spcmﬁclq
Before Move sofa Move sofa After
moving sofa to the door side to the LOS path  rebuilding the model

Fig. 17. Robustness to furniture location change.

of the other WiFi device. Knowing this information is tanta-
mount to knowing which area the subject is in. In the testing
phase, three different students (d, e, f) were invited to per-
form daily activities and evaluate the performance of these
models built from the training data set with the subject set
(a, b, ©). Averaging the evaluation results with the three stu-
dents for each room, we get the performance comparison
results in Fig. 16b. In general, RT-Fall achieves 91 percent of
sensitivity and 92 percent of specificity. Compared to the
baseline method WiFall, RT-Fall gets 14 percent higher sen-
sitivity and 10 percent higher specificity.

6.5.2 Robustness

As wireless signal is said to be very sensitive to environ-
ment, we thus evaluate the robustness of our approach
against setting changes, including opening the door and
window, switching on/off the light, moving the furniture
around, and testing in different rooms. While the RT-Fall
system performance is not affected much by the opening of
windows/door or the light on/off in the four test environ-
ments, its performance deteriorates when the big furniture
is moved or test is done in a new environment with the old
model built for the old environment. We will detail the
results in the following subsections.

Impact of moving the furniture location. We move the sofa to
different places in the office room to evaluate the impact on
the fall detection performance. The experiment was done
under four different conditions: Fall detection is conducted
while the sofa is put in the original place (baseline), perform
the same experiment when the sofa is moved to the door
side, do the same test after moving the sofa to the LOS path,
and re-train the model and repeat the test as in last case. We
arrange three students to conduct 20 falls and 40 fall-like
activities in each of the first three scenarios to evaluate the
impact on the system performance, and each student com-
pletes all the tests in one day. For the last test, we ask each
student to conduct 100 falls and 100 fall-like activities in one
week and use the collected training data to rebuild the
model. Then we evaluate the new model in the same way as
we did in the first three scenarios to get the averaged results
as shown in Fig. 17. When the sofa is moved from the origi-
nal place to the door side, the sensitivity drops a little bit
from 89 to 86 percent and the specificity drops from 92 to
77 percent. However, when the sofa is moved to the room
center which blocks the LOS path, the sensitivity suffers
from a severe deterioration from 89 to 57 percent and the
specificity drops from 92 to 59 percent. So it seems that the
bulky furniture movement has quite a big impact on the fall
detection results, the reason is probably due to the signifi-
cant CSI change caused by the variations in RF propagation
multi-paths. When the model was reconstructed using the
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Fig. 18. Robustness to different rooms.

training data collected in the new setting, the test results
restore to a comparable level, with 87 percent of sensitivity
and 90 percent of specificity respectively.

System evaluation in different environments. Finally, we
conduct experiments to test the performance of a model
built for one environment in other environments. Specifi-
cally, we use the model M1 built for the office room and
apply it to the apartment and meeting room settings. We
ask three students to conduct 40 falls and 80 fall-like activi-
ties in each place in three days. Then we get the averaged
results of system performance in each environment as
shown in Fig. 18. The sensitivity changes from 89 to 65 per-
cent, 70 and 90 percent in the apartment, meeting room and
hall setting, respectively; and the specificity drops from 93
to 70 percent, 72 and 75 percent in the apartment, meeting
room and hall setting, respectively. Finally, averaging the
results in the apartment, meeting room and hall, the sensi-
tivity drops from 89 to 71 percent while the specificity drops
from 93 to 72 percent. If we recall the RT-Fall system perfor-
mance in each place with the model constructed for that
environment as shown in Fig. 16b, it is obvious that all the
system models are environment dependent and optimal
performance can be achieved only by fine-tuning the per-
sonalized model in a specific environment. In summary, the
system is quite robust to small environment changes. For
the significant environment changes, the system perfor-
mance can be ensured by applying the new model learned
from the changed settings.

7 DISCUSSION

7.1 Major Reasons Causing Detection Errors

As the sensitivity and specificity are not 100 percent, we
would like to analyze what causes the classification errors
in fall detection. After careful analysis about the classifica-
tion algorithms and results, we find two major reasons that
prevent perfect fall detection. The first reason is that the fea-
tures extracted for fall-like activities are very close to those
of falls under certain context, which lead to wrong classifi-
cation results in terms of both sensitivity and specificity. For
example, when the subject quickly sits down onto the chair
and leans against the back of the chair, it is sometimes clas-
sified as a fall. For this type of mis-classification, we plan to
introduce more salient features as the input to help distin-
guish the fall and fall-like activities. The second reason is
that the extracted features for fall and fall-like activities are
context-dependent, the same type of activities may show
different features for different places. Taking the office
room (see Fig. 12a) as example, we notice that the locations
behind the desk (a, b) have lower detection rate than loca-
tions in ¢, d, e, f. One possible reason is that there is a direct

signal path between human body and the transceivers in c,
d, e, f, but the direct signal path is blocked for the locations
a and b. Hence a promising research direction is to intro-
duce context such as location information in the fall detec-
tion algorithm to improve the system performance. For
instance, we might roughly locate the elder in the room first,
and then select a location-based classification model for
accurate fall detection.

7.2 Extend the Solution to Multi-Room Settings

This work focuses mainly on the use case of applying the fall
detection system in a single room setting. Even though we
also test the RT-fall in an apartment with three rooms and
obtain quite satisfactory results, we find that it’s not trivial to
find the best places to install the WiFi access point and device
to ensure good RF coverage and consistent detection perfor-
mance in a multi-room setting. In fact, it’s rather a big chal-
lenge to find the optimal setting given a certain multi-room
layout. In the future we plan to investigate the optimal
device placement issue for RF coverage and fall detection.

7.3 Extend the Solution to Multi-Person Settings
Although RT-fall is designed for a single elder living alone
and independently at home, we did perform experiments to
see its applicability in multi-person settings. We find that
RT-fall can work only when there is only one person moving
while the others are still. Specifically, we find that if two sub-
jects are in the room, one is sleeping or sitting on the chair,
when the other subject falls, RT-fall can still detect it reliably.
This corresponds to the situation that when one elder is
sleeping during night, the system can still detect the fall
when the other elder gets up and falls in the same apartment.
While both elders are active, one should be able to help when
the partner happens to fall in the same apartment.

8 CONCLUSION

In this paper, we design and implement a real-time, contact-
less, low-cost yet accurate indoor fall detection system, RT-
fall, using one commercial off-the-shelf WiFi router and
WiFi receiving devices. To the best of our knowledge, this is
the first work to identify the CSI phase difference as a better
base signal than amplitude for fall activity segmentation
and detection, it also discovers the sharp power profile
decline pattern of the fall in the time-frequency domain and
leverages the insight for accurate fall segmentation/detec-
tion. Experimental results conducted in four indoor envi-
ronments demonstrate that RT-fall has great potential to
become a practical and non-intrusive fall detection solution.

Fall detection has long been a research challenge in the
public healthcare domain for the elders. Although we
implemented quite an effective fall detector using off-the-
shelf WiFi devices, there are still many interesting problems
that deserve further study. For example, can we develop a
very accurate personalized fall detector for each individual
elder? How can we develop a fall detector which can adapt
and evolve according to the environment change? While in
this work we exploit the power of phase difference for activ-
ity segmentation and fall detection, we believe that it could
be an effective enabler for activity recognition in general,
especially for those with tiny body movement. We are
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working on these questions and expect to obtain promising
results soon.

ACKNOWLEDGMENTS

This work is funded by the National 1000-plan Research
Grant and the NSFC Grant No. 61572048. The authors
would like to thank Wang Yibo, Li Xiang, and Wu Dan for
their help with experiments. D. Zhang is the corresponding
author.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

S.R. Lord, C. Sherrington, H. B. Menz, and J. C. Close, Falls Older
People: Risk Factors Strategies Prevention. Cambridge, U.K.: Cam-
bridge Univ. Press, 2007.

O. A. FALLS. (2013). Falls among older adults: An overview
[online]. Available: http://www.cdc.gov/HomeandRecreational-
Safety/Falls /adultfalls.html/

P. J. Rajendran, “A smart and passive floor-vibration based fall
detector,” Ph.D. dissertation, Univ. Virginia, Charlottesville, VA,
USA, 2007.

D. Wild, U. Nayak, and B. Isaacs, “How dangerous are falls in old
people at home?” B. Med. |., vol. 282, no. 6260, pp. 266-268, 1981.
S. M. Friedman, B. Munoz, S. K. West, G. S. Rubin, and L. P. Fried,
“Falls and fear of falling: Which comes first? a longitudinal pre-
diction model suggests strategies for primary and secondary pre-
vention,” . Amer. Geriatrics Soc., vol. 50, no. 8, pp. 1329-1335, 2002.
H. Rimminen, J. Lindstrom, M. Linnavuo, and R. Sepponen,
“Detection of falls among the elderly by a floor sensor using the
electric near field,” IEEE Trans. Inform. Technol. Biomed., vol. 14,
no. 6, pp. 1475-1476, Nov. 2010.

Y. Li, K. Ho, and M. Popescu, “A microphone array system for
automatic fall detection,” IEEE Trans. Bio. Eng., vol. 59, no. 5,
pp- 1291-1301, May 2012.

H. Foroughi, B. S. Aski, and H. Pourreza, “Intelligent video sur-
veillance for monitoring fall detection of elderly in home environ-
ments,” in Proc. 11th IEEE Int. Conf. Comput. Inform. Technol., 2008,
pp- 219-224.

N. Noury, A. Fleury, P. Rumeau, A. Bourke, G. Laighin, V. Rialle,
and ]. Lundy, “Fall detection-principles and methods,” in Proc.
29th IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2007, pp. 1663-1666.
X. Yu, “Approaches and principles of fall detection for elderly and
patient,” in Proc. 10th Int. Conf. e-health Netw., Appl. Serv., 2008,
pp. 42-47.

V. Spasova and L. Iliev, “A survey on automatic fall detection in
the context of ambient assisted living systems,” Int. |. Adv. Com-
put. Res., vol. 4, pp. 94-109, 2014.

C.D. Lord C.J., “Falls in the elderly: Detection and assessment,” in
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 1991, pp. 1938-1939.
Q. T. Huynh, U. D. Nguyen, L. B. Irazabal, N. Ghassemian, and
B. Q. Tran, “Optimization of an accelerometer and gyroscope-
based fall detection algorithm,” J. Sens., vol. 2015, pp. 1-8, 2015.

F. Bianchi, S. J. Redmond, M. R. Narayanan, S. Cerutti, and
N. H. Lovell, “Barometric pressure and triaxial accelerometry-
based falls event detection,” IEEE Trans. Neural Syst. Rehabil.,
vol. 18, no. 6, pp. 619-627, Dec. 2010.

Y.-C. Chen and Y.-W. Lin, “Indoor RFID gait monitoring system
for fall detection,” in Proc. IEEE 2nd Int. Symp. Aware Comput.,
2010, pp. 207-212.

J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, “Perfalld: A perva-
sive fall detection system using mobile phones,” in Proc. 8th IEEE
Int. Conf. Pervasive Comput. Commun. Workshops, 2010, pp. 292-297.
S. Tao, M. Kudo, and H. Nonaka, “Privacy-preserved behavior
analysis and fall detection by an infrared ceiling sensor network,”
Sensors, vol. 12, no. 12, pp. 16920-16936, 2012.

Z.-P. Bian, J. Hou, L.-P. Chau, and N. Magnenat-Thalmann, “Fall
detection based on body part tracking using a depth camera,” IEEE
J. Biomed. Health Informat., vol. 19, no. 2, pp. 430-439, Mar. 2015.

E. E. Stone and M. Skubic, “Fall detection in homes of older adults
using the microsoft kinect,” IEEE ]. Biomed. Health Informat.,
vol. 19, no. 1, pp. 290-301, Jan. 2015.

N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, “Automatic
fall monitoring: A review,” Sensors, vol. 14, no. 7, pp. 12900-
12936, 2014.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

525

D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release:
Gathering 802.11 n traces with channel state information,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, pp. 53-53, 2011.
A. E. Kosba, A. Saeed, and M. Youssef, “Rasid: A robust WLAN
device-free passive motion detection system,” in Proc. IEEE Int.
Conf. Pervasive Comput. Commun. (PerCom)., 2012, pp. 180-189.

K. Qian, C. Wu, Z. Yang, Y. Liu, and Z. Zhou, “Passive detection
of moving targets with dynamic speed using PHY layer
information,” in Proc. 20th IEEE Int. Conf. Parallel Distrib. Syst.,
2015, pp. 1-8.

G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni, “We can hear you
with wi-fi” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw.,
2014, pp. 593-604.

Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proc. 19th Annu. Int. Conf.
Mobile Comput. Netw., 2013, pp. 27-38.

P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu, “Leveraging
directional antenna capabilities for fine-grained gesture recog-
nition,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2014, pp. 541-551.

X. Liu, J. Cao, S. Tang, and J. Wen, “Wi-sleep: Contactless sleep
monitoring via wifi signals,” in Proc. IEEE Real-Time Syst. Symp.,
2014, pp. 346-355.

J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, “Tracking
vital signs during sleep leveraging off-the-shelf wifi,” in Proc. 16th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2015, pp. 267-276.
C. Han, K. Wu, Y. Wang, and L. M. Ni, “Wifall: Device-free fall
detection by wireless networks,” in Proc. IEEE INFOCOM, 2014,
pp- 271-279.

Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu,
“E-eyes: Device-free location-oriented activity identification using
fine-grained wifi signatures,” in Proc. 20th Annu. Int. Conf. Mobile
Comput. Netw., 2014, pp. 617-628.

D. Zhang, H. Wang, Y. Wang, and J. Ma, “Anti-fall: A non-intru-
sive and real-time fall detector leveraging CSI from commodity
WiFi devices,” in Proc. 13th Int. Conf. Inclusive Smart Cities e-Health,
2015, pp. 181-193.

P. Bahl and V. N. Padmanabhan, “Radar: An in-building RF-based
user location and tracking system,” in Proc. INFOCOM 19th Annu.
Joint Conf. IEEE Comput. Commun. Societies., 2000, pp. 775-784.

B. Kellogg, V. Talla, and S. Gollakota, “Bringing gesture recogni-
tion to all devices,” in Proc. 11th USENIX Conf. Netw. Syst. Des.
Implementation, 2014, pp. 303-316.

W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang,
“Electronic frog eye: Counting crowd using WiFi,” in Proc. IEEE
INFOCOM, 2014, pp. 361-369.

W. Liu, X. Gao, L. Wang, and D. Wang, “BFP: Behavior-free pas-
sive motion detection using PHY information,” Wireless Personal
Commun., vol. 83, no. 2, pp. 1-21, 2015.

C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao, “Non-invasive
detection of moving and stationary human with wifi,” IEEE ].
Selected Areas Commun., vol. 33, no. 11, pp. 2329-2342, 2015.

S. Sigg, M. Scholz, S. Shi, Y. Ji, and M. Beigl, “Rf-sensing of activi-
ties from non-cooperative subjects in device-free recognition sys-
tems using ambient and local signals,” IEEE Trans. Mobile
Comput., vol. 13, no. 4, pp. 907-920, Apr. 2014.

J. Shea. (2005). An investigation of falls in the elderly [Online].
Available: http:/ /www.signalquest.com/master

D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. press, 2005.

S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka, “You are
facing the Mona Lisa: Spot localization using PHY layer
information,” in Proc. 10th Int. Conf. Mobile Systems, Appl., Serv.,
2012, pp. 183-196.

J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson, “Phaser:
Enabling phased array signal processing on commodity wifi
access points,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw.,
2014, pp. 153-164.

C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu, and M. Liu, “Phaseu:
Real-time los identification with WiFi,” in Proc. IEEE 33rd Annu.
Int. Conf. Comput. Commun., 2015, pp. 2688-2696.

R. Nandakumar, B. Kellogg, and S. Gollakota, “Wi-fi gesture rec-
ognition on existing devices,” arXiv preprint arXiv:1411.5394, 2014.
C. W. Han, S. J. Kang, and N. S. Kim, “Implementation of HMM-
based human activity recognition using single triaxial acceler-
ometer,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. 93, no. 7, pp. 1379-1383, Jul. 2010.



526 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.16, NO.2, FEBRUARY 2017

[45] H. Kerdegari, K. Samsudin, A. R. Ramli, and S. Mokaram,
“Evaluation of fall detection classification approaches,” in Proc.
4th Int. Conf. Intell. Adv. Syst., 2012, pp. 131-136.

C. S. Hemalatha and V. Vaidehi, “Frequent bit pattern mining
over tri-axial accelerometer data streams for recognizing human
activities and detecting fall,” Procedia Comput. Sci., vol. 19, pp. 56—
63,2013.

B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett,
“New support vector algorithms,” Neural Comput., vol. 12, no. 5,
pp. 1207-1245, 2000.

C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27,2011.

[46]

[471

[48]

Hao Wang received the MS degree in software
engineering from the School of Software and
Microelectronics, Peking University, in 2013. He
is currently working toward the PhD degree in
computer science with the School of Electronics
Engineering and Computer Science, Peking
University. His research interests include mobile
crowdsensing and ubiquitous computing. He is a
student member of the IEEE.

Daqing Zhang received the PhD degree from the
University of Rome La Sapienza in 1996. He is a
chair professor in the School of EECS, Peking Uni-
versity, China. He has published more than 200
technical papers in leading conferences and jour-
nals. He served as the general or program chair
for more than 10 international conferences, giving
keynote talks at more than 16 international confer-
ences. He is the associate editor for the ACM
Transactions on Intelligent Systems and Technol-
ogy, IEEE Transactions on Big Data, etc. He is the
winner of the 10-years CoMoRea Impact Paper Award at the IEEE Per-
Com 2013, the Honorable Mention Award at the ACM UbiComp 2015, the
Best Paper Award at the IEEE UIC 2015 and 2012, and the Best Paper
Runner Up Award at Mobiquitous 2011. His research interests include
context-aware computing, urban computing, mobile computing, big data
analytics, pervasive elderly care, etc. He is a member of the IEEE.

Yasha Wang received the PhD degree in the
Northeastern University, Shenyang, China, in
20083. He is currently a professor and associate
director of the National Research & Engineering
Center of Software Engineering, Peking Univer-
sity, China. He has published more than 50 papers
in prestigious conferences and journals, such as
ICWS, UbiComp, ICSP, etc. As a technical leader
and manager, he has accomplished several key
national projects on software engineering and
smart cities. Cooperating with major smart-city
solution providing companies, his research work has been adopted in
more than 20 cities in China. His research interest includes urban data
analytics, ubiquitous computing, software reuse, and online software
development environment. He is a member of the IEEE.

Junyi Ma received the BE degree in network
engineering from the School of Computer Sci-
ence, Beijing University of Posts and Telecommu-
nications, Beijing, China, in 2015. He is currently
working toward the PhD degree in computer sci-
ence in the School of Electronics Engineering
and Computer Science, Peking University. His
research interests include ubiquitous computing
and mobile computing.

Yuxiang Wang is a senior at Peking University,
studying computer science and technology. He is
going to work toward the master’'s degree in the
School of Electronics Engineering and Computer
Science, Peking University. His main research
interest is ubiquitous computing.

Shengjie Li received the BE degree in software
engineering from Jilin University, Changchun,
China, in 2015. She is currently working toward
the PhD degree in computer science in the
School of Electronics Engineering and Computer
Science, Peking University. Her research inter-
ests include mobile crowd-sensing and ubiqui-
tous computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


