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Recent research has shown great potential of exploiting Channel State Information (CSI) retrieved from commodity Wi-
Fi devices for contactless human sensing in smart homes. Despite much work on Wi-Fi based indoor localization and
motion/intrusion detection, no prior solution is capable of detecting a person entering a room with a precise sensing boundary,
making room-based services infeasible in the real world. In this paper, we present WiBorder, an innovative technique for
accurate determination of Wi-Fi sensing boundary. The key idea is to harness antenna diversity to effectively eliminate random
phase shifts while amplifying through-wall amplitude attenuation. By designing a novel sensing metric and correlating it with
human’s through-wall discrimination, WiBorder is able to precisely determine Wi-Fi sensing boundaries by leveraging walls
in our daily environments. To demonstrate the effectiveness of WiBorder, we have developed an intrusion detection system
and an area detection system. Extensive results in real-life scenarios show that our intrusion detection system achieves a
high detection rate of 99.4% and a low false alarm rate of 0.68%, and the area detection system’s accuracy can be as high as
97.03%. To the best of our knowledge, WiBorder is the first work that enables precise sensing boundary determination via
through-wall discrimination, which can immediately benefit other Wi-Fi based applications.
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1 INTRODUCTION
In recent years, with the rapid development of wireless technologies, the role of Wi-Fi Radio Frequency (RF) signal
has been extended from a sole communication medium to a non-intrusive environmental sensing tool. Compared
with other contactless (a.k.a, device-free) sensing techniques such as camera-based [32, 34] or ultrasound-
based [8, 44, 55] approaches, one key advantage of Wi-Fi sensing is its ubiquity in indoor environments, requiring
no extra infrastructure deployment. By 2019, more than 13 billion active Wi-Fi devices have been deployed around
the globe [47].

In a typical indoor environment, Wi-Fi signals propagate not only along the Line-of-Sight (LoS) path from the
transmitter to the receiver, but also through multi-paths, reflected by one or more objects before arriving at the
receiver, hence carrying information about the environment. By analyzing the received RF signal patterns and
characteristics, many Wi-Fi based human sensing applications have been developed, ranging from coarse-grained
sensing such as activity recognition [7, 15, 40, 43, 45], indoor localization/tracking [21, 25, 26, 35, 42, 54, 56], and
motion detection [20, 24, 27, 36, 50, 53, 59], to fine-grained sensing like respiration monitoring [28, 58, 60]. A
lot of these applications require prior knowledge of whether a target has entered the sensing area of interest.
For example, intrusion detection applications need to know whether someone has entered a house in order to
raise an intrusion alarm in time. It is particularly important for such applications to accurately detect a person
entering the house (i.e., crossing a precise boundary) and avoid false alarms caused by human motion outside the
house. As another example, smart home applications need to know which area the sensing target is in, so as
to provide location-aware services, e.g., turning on light when a user enters the bathroom. Moreover, it is well
known that activities are closely related to areas, e.g., sleeping in the bedroom and cooking in the kitchen. As
such, knowing the area provides important location-related context for activity recognition systems. Given that
a target is in a specific area (e.g., bathroom) and fewer activities can be conducted in that area, the number of
candidate activities to consider is much smaller in the classification process, which can significantly reduce the
complexity of activity recognition.

Ideally, we would like to draw a clear line (i.e., precise boundary sensing) to determine whether a human target
has entered a sensing area or not. Although much research has been conducted to detect human motion state or
locate human target, several limitations still remain when applying these methods to determine clear sensing
boundaries in real-life scenarios. On the one hand, existing approaches usually detect human motion by extracting
time-domain or frequency-domain features from Wi-Fi signals, such as variance or correlation from the time
domain and Doppler frequency shift from the frequency domain. These methods are proposed to detect human
motion within the sensing range of Wi-Fi devices. However, the coverage of Wi-Fi signals is quite large (e.g., 46m
for 2.4GHz [48]), and so is the sensing range of those systems, resulting in a fuzzy sensing boundary. Conversely,
Wi-Fi based human sensing usually requires accurate detection of a human target’s presence within a given area
of interest. Such requirements call for a method to determine a clear sensing boundary for the given area. On the
other hand, previous works have also attempted to localize human target using fingerprinting-based methods or
geometric mapping-based methods. To the best of our knowledge, the 90th percentile error of current device-free
localization methods can be as large as 2m [12]. Such localization accuracy is insufficient for determining precise
sensing boundary in real-life scenarios.
In this paper, to address the limitations mentioned above, we present WiBorder, a novel solution that takes

advantage of common walls that exist in indoor environments for precise sensing boundary determination. By
utilizing the wall and wall’s extension, we’d like to obtain a clear line (i.e., boundary) to determine whether
a human target has crossed the line or not. By observing the human reflected signal strength distribution
inside or outside a wall, we find that the distribution changes gradually inside the wall when there is a direct
reflected path off the human body, but drops significantly when the person moves from inside to outside and
the direct reflected path becomes indirect (i.e., through-wall). By measuring the distribution continuously in
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real-time, we can determine whether a person is inside or outside a precise boundary via through-wall signal
discrimination. Specifically, we employ two antennas on the receiver, which are widely available on commodity
Wi-Fi devices for performance boosting. We first apply CSI conjugate multiplication between the two antennas,
which not only eliminates the time-varying phase shift in raw CSI, but also amplifies through-wall amplitude
attenuation. Then from the conjugate-multiplying CSI, we construct an effective CSI metric called DCM-CSI to
characterize the human reflected signal strength distribution, which has the strong capability of precise boundary
sensing via through-wall signal discrimination. Furthermore, through a detailed investigation that establishes
the corresponding relationship between DCM-CSI and human movement, we explain this boundary sensing
capability theoretically and validate it through extensive empirical studies. Finally, to evaluate the effectiveness
of WiBorder, we have conducted extensive real-world experiments with two case studies: an intrusion detection
system and an area detection system. A demo video is also submitted as attached material to demonstrate the
effectiveness of our proposed techniques in these two case studies.
The main contributions of this work can be summarized as follows:

(1) For the first time, we propose a precise sensing boundary determination method called WiBorder, taking
advantage of common walls in our daily life. To achieve this, we design an effective metric (DCM-CSI) which
is extracted from CSI conjugate multiplication between two antennas and is effective for discrimination of
inside-wall and outside-wall activities.

(2) We develop the mathematical relationship between human movement and DCM-CSI, and theoretically explain
DCM-CSI’s capability for precise boundary sensing. Moreover, we have conducted extensive empirical studies
to validate this capability.

(3) We have conducted two case studies in real-life scenarios to fully demonstrate the effectiveness of WiBorder.
The first is an intrusion detection system, which achieves a high detection rate of 99.4% and a low false
alarm rate of 0.68%. The second is an area detection system that achieves a high area detection accuracy of
97.03%. Furthermore, we have conducted an in-situ experiment to test the feasibility of our area detection
system for multi-area trajectory recording, and the result demonstrates its potential for behavioral analysis of
multi-person movements in indoor environments.
The rest of this paper is organized as follows. Sec. 2 presents DCM-CSI, the new CSI metric and its relationship

with human movement. Sec. 3 presents extensive empirical studies to demonstrate the unique property of DCM-
CSI for Wi-Fi sensing boundary determination. Sec. 4 describes two case studies to fully evaluate the effectiveness
of WiBorder. Sec. 5 surveys related work. Sec. 6 offers some guidance for device deployment and discusses more
opportunities for WiBorder. Finally, Sec. 7 concludes this work.

2 DCM-CSI: A NEW CSI METRIC FOR THROUGH-WALL DISCRIMINATION
In this section, we first present the intuition of WiBorder and introduce how we realize this intuition by extracting
an effective metric from Wi-Fi CSI. In order to derive this new metric, we first lay the foundation by introducing
the basic concept of CSI, then detail the effect of human movement on CSI and conjugate-multiplying CSI of two
antennas. Finally, we describe how to derive DCM-CSI, the new CSI metric from conjugate-multiplying CSI, and
reveal the theoretical relationship between human movement and DCM-CSI.

2.1 Intuition of WiBorder
The inspiration of WiBorder comes from the observation that, in typical indoor environments, sensing areas of
interest are usually at room level, with distinctive characteristics of being divided by walls. These walls naturally
form the boundaries between different spaces and play an important role in real-world sensing applications. Take
intrusion detection as an example, the sensing boundaries are walls of a target house. As for area detection in a
smart home, the sensing area is typically a room of interest (e.g., bathroom or bedroom), which is usually defined
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Fig. 1. Illustration of Wi-Fi multi-path propagation in an indoor environment, and the difference between direct dynamic

signal and indirect (i.e., through-wall) dynamic signal.

by walls around it. Therefore, if we could capture certain features from Wi-Fi signals to discriminate between
inside-wall and outside-wall activities, then it would be easy to determine precise sensing boundaries using walls
in the environment.

Before answering the question of how to discriminate between inside-wall and outside-wall activities, we first
introduce two basic concepts: direct dynamic signal and indirect dynamic signal. As shown in Figure 1, among
all the multi-path propagation signals within an environment, there are static signals (signals that are reflected
by static objects such as walls or furniture), and dynamic signals (signals that are reflected by moving human
target). Dynamic signals can further be divided into two types: (1) direct dynamic signals (abbreviated as direct
signals): signals that are directly reflected by a moving human target when propagating from the transmitter
to the receiver; (2) indirect dynamic signals (abbreviated as indirect signals): signals that are reflected by a
moving human target but penetrate through walls along their propagation. Once the transceivers are deployed,
inside-wall and outside-wall activities will cause different types of dynamic signals. As such, if we can differentiate
between direct and indirect signals, we are able to discriminate inside-wall and outside-wall activities. To achieve
this, WiBorder first applies conjugate multiplication between Wi-Fi CSI readings of the receiver’s two antennas,
which not only eliminates time-varying phase shift in the raw CSI, but also amplifies through-wall amplitude
attenuation [26]. Then we construct DCM-CSI, a novel CSI metric from the conjugate-multiplying CSI, capable
of distinguishing direct and indirect signals.
In the following sections, we will introduce the effect of human movement on CSI and the two-antenna

conjugate-multiplying CSI, and present the derivation of DCM-CSI in details.

2.2 Primer of CSI and CSI Conjugate Multiplication
Due to multi-path propagation in a typical indoor environment, the Wi-Fi signal received at the receiver is a
superposition of signals from all paths. As a consequence, the CSI can be expressed as:

𝐻 (𝑓 , 𝑡0 + 𝑡) =
𝐿∑︁
𝑙=1

𝛼𝑙 (𝑡0 + 𝑡)𝑒−𝑗2𝜋 𝑓 𝜏𝑙 (𝑡0+𝑡 ) , (1)

where 𝐿 is the number of propagation signals, 𝜏𝑙 (𝑡0 + 𝑡) is the propagation delay of the 𝑙-th signal at time 𝑡0 + 𝑡 ,
and 𝛼𝑙 (𝑡0 + 𝑡) is the amplitude attenuation. These propagation signals can be further grouped into static signals
and dynamic signal, where the static signals do not change with time, and the dynamic signals change with the
movement of human targets [43]. Then, the CSI can be rewritten as:

𝐻 (𝑓 , 𝑡0 + 𝑡) =
𝑆∑︁
𝑠=1

𝛼𝑠𝑒
−𝑗2𝜋 𝑓 𝜏𝑠 +

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0 + 𝑡)𝑒−𝑗2𝜋 𝑓 𝜏𝑑 (𝑡0+𝑡 ) , (2)

where 𝑆 is the set of static signals, and 𝐷 is the set of dynamic signals. After merging static part of signals into a
constant complex value, we simplify the CSI expression as:
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𝐻 (𝑓 , 𝑡0 + 𝑡) = 𝐴𝑠𝑒
𝑗𝜙𝑠 +

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0 + 𝑡)𝑒 𝑗𝜙𝑑 (𝑡0+𝑡 ) , (3)

where 𝐴𝑠𝑒
𝑗𝜙𝑠 is the CSI of merged static signals and 𝛼𝑑 (𝑡0 + 𝑡), 𝜙𝑑 (𝑡0 + 𝑡) are the amplitude attenuation and phase

change of the 𝑑-th dynamic signal, respectively. As the human target moves in the environment, the path length
of dynamic signals changes accordingly, resulting in changes of 𝛼𝑑 (𝑡0 + 𝑡), 𝜙𝑑 (𝑡0 + 𝑡). In other words, the change
of CSI can be utilized to characterize the human target movement. However, since the receivers are not strictly
synchronized in carrier frequency with the transmitters on commodity devices, there is a time-varying random
phase offset 𝑒𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡 in each CSI sample, shown as follows:

𝐻 (𝑓 , 𝑡0 + 𝑡) = 𝑒 𝑗𝜃𝑜𝑓 𝑓 𝑠𝑒𝑡 (𝐴𝑠𝑒
𝑗𝜙𝑠 +

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0 + 𝑡)𝑒 𝑗𝜙𝑑 (𝑡0+𝑡 ) ) (4)

This random phase offset can have a significant impact on CSI, thus interferes with the mapping between CSI
change and human movement. To eliminate this random phase offset, we can apply conjugate multiplication
between the CSI readings from two antennas. This works because different antennas on the same Wi-Fi card (e.g.,
Intel 5300 Wi-Fi card has three antennas) share the same RF oscillator, so the time-varying random phase offsets
are the same across different antennas [26].
After conjugate multiplication, as expressed in Equation 5, conjugate-multiplying CSI is composed of four

components. The first component is the product of static CSI of the first antenna and conjugate-static CSI of the
second antenna. The second component is the product of static CSI of the first antenna and conjugate-dynamic
CSI of the second antenna. The third component is the product of dynamic CSI of the first antenna and conjugate-
static CSI of the second antenna. And the fourth component is the product of dynamic CSI of the first antenna
and conjugate-dynamic CSI of the second antenna.

𝐻1 (𝑓 , 𝑡0 + 𝑡) · 𝐻 ∗
2 (𝑓 , 𝑡0 + 𝑡) = (𝐴𝑠1𝑒

𝑗𝜙𝑠1 +
𝐷1∑︁
𝑑1=1

𝛼𝑑1 (𝑡0 + 𝑡)𝑒 𝑗𝜙𝑑1 (𝑡0+𝑡 ) ) · (𝐴𝑠2𝑒
−𝑗𝜙𝑠2 +

𝐷2∑︁
𝑑2=1

𝛼𝑑2 (𝑡0 + 𝑡)𝑒−𝑗𝜙𝑑2 (𝑡0+𝑡 ) )

= 𝐴𝑠1𝐴𝑠2𝑒
𝑗 (𝜙𝑠1−𝜙𝑠2 )︸               ︷︷               ︸
1

+𝐴𝑠1

𝐷2∑︁
𝑑2=1

𝛼𝑑2 (𝑡0 + 𝑡)𝑒−𝑗 (𝜙𝑑2 (𝑡0+𝑡 )+𝜙𝑠1 )︸                                       ︷︷                                       ︸
2

+𝐴𝑠2

𝐷1∑︁
𝑑1=1

𝛼𝑑1 (𝑡0 + 𝑡)𝑒 𝑗 (𝜙𝑑1 (𝑡0+𝑡 )−𝜙𝑠2 )︸                                      ︷︷                                      ︸
3

+
𝐷1∑︁
𝑑1=1

𝛼𝑑1 (𝑡0 + 𝑡)𝑒 𝑗𝜙𝑑1 (𝑡0+𝑡 )
𝐷2∑︁
𝑑2=1

𝛼𝑑2 (𝑡0 + 𝑡)𝑒−𝑗𝜙𝑑2 (𝑡0+𝑡 )︸                                                             ︷︷                                                             ︸
4

(5)

2.3 From CSI Conjugate Multiplication to DCM-CSI
As shown above, after conjugate multiplication, the expression is quite complex. To further simplify the above
expression, we have three key observations:

• For two close-by antennas on the same Wi-Fi card, they share the same number of incoming signals,
which means 𝐷1 = 𝐷2 [25, 58]. Moreover, the amplitude attenuation of a dynamic signal reaching two
close-by antennas can be considered as similar [25]. Therefore, 𝛼𝑑1 (𝑡0 + 𝑡) and 𝛼𝑑2 (𝑡0 + 𝑡) can be expressed
as 𝛼𝑑 (𝑡0 + 𝑡).

• When human moves for a short distance, the change of the amplitude 𝛼𝑑 (𝑡0 + 𝑡) is very small, which can
be regarded as a constant 𝛼𝑑 (𝑡0) in a short time window [33].
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• Compared with the amplitude of merged static signals(𝐴𝑠1 or 𝐴𝑠2 ), the amplitude 𝛼𝑑 (𝑡0 + 𝑡) of dynamic
signals is very small, thus the fourth component of conjugate-multiplying CSI is small enough to be
ignored [26].

Based on these observations, we can simplify CSI conjugate multiplication as shown in Equation 6, in which
𝜙1
𝑑
(𝑡0 + 𝑡), 𝜙2

𝑑
(𝑡0 + 𝑡) represent the different phases for the 𝑑-th dynamic signal of two antennas. After conjugate

multiplication, we can see that the random phase offset has been successfully removed from the original CSI,
which won’t affect the capability of characterizing the human movement. The new conjugate-multiplying CSI is
composed of three components, where the first component is a constant and does not change over time, and the
second and the third components would change corresponding to the human target movement. Please note that
in the simplified conjugate-multiplying CSI, we use the symbol 𝐷 to represent the number of human-introduced
dynamic signals on two antennas, when modeling the relationship between conjugate-multiplying CSI and human
movement, we do not make the strong assumption that human reflection is a single point reflection. Instead,
in practice, the human body has multiple effective reflection points that introduce dynamic signals [2]. Among
these dynamic signals, some reach the receiver directly, while others may go through the second reflection due to
surrounding furniture or ceilings before reaching the receiver [3]. Using this conjugate-multiplying CSI, we will
now introduce how to extract our novel metric DCM-CSI to discriminate between direct and indirect signals.

𝐻1 (𝑓 , 𝑡0 + 𝑡) · 𝐻 ∗
2 (𝑓 , 𝑡0 + 𝑡) = 𝐴𝑠1𝐴𝑠2𝑒

𝑗 (𝜙𝑠1−𝜙𝑠2 )︸               ︷︷               ︸
1

+𝐴𝑠1

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0)𝑒−𝑗 (𝜙
1
𝑑
(𝑡0+𝑡 )+𝜙𝑠1 )︸                                ︷︷                                ︸

2

+𝐴𝑠2

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0)𝑒 𝑗 (𝜙
2
𝑑
(𝑡0+𝑡 )−𝜙𝑠2 )︸                              ︷︷                              ︸

3

(6)

Suppose there are 𝑀 conjugate-multiplying CSI samples within a short time window, we can construct a
conjugate-multiplying vector:

®𝑆 (𝑓 , 𝑡0) = [𝐻1 (𝑓 , 𝑡0)𝐻 ∗
2 (𝑓 , 𝑡0), 𝐻1 (𝑓 , 𝑡0 + Δ𝑡1)𝐻 ∗

2 (𝑓 , 𝑡0 + Δ𝑡1), . . . , 𝐻1 (𝑓 , 𝑡0 + Δ𝑡𝑀 )𝐻 ∗
2 (𝑓 , 𝑡0 + Δ𝑡𝑀 )],

where [0,Δ𝑡1, . . . ,Δ𝑡𝑀 ] is the sampling interval with respect to the sample of time 𝑡0. Then by subtracting the
mean value of the vector ®𝑆 (𝑡0), we can remove the constant signal term in the conjugate-multiplying CSI and get
a zero-mean vector ®𝑋 (𝑓 , 𝑡0):

®𝑋 (𝑓 , 𝑡0) = ®𝑆 (𝑓 , 𝑡0) − ®𝑆 (𝑓 , 𝑡0),

Assume variable 𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) is the 𝑘-th element in vector ®𝑋 (𝑓 , 𝑡0). Combined with Equation 6, we can express
𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) as:

𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) = 𝐴𝑠1

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0)𝑒 𝑗Ψ𝑑 (𝑡0+Δ𝑡𝑘 ) +𝐴𝑠2

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0)𝑒 𝑗Ω𝑑 (𝑡0+Δ𝑡𝑘 )

Note that after the mean-subtract operation, the first static CSI part in conjugate-multiplying CSI has been
removed. And Ψ𝑑 (𝑡0 + Δ𝑡𝑘 ),Ω𝑑 (𝑡0 + Δ𝑡𝑘 ) are the mean-subtract phase of dynamics signals from two antennas.
Since the dynamic signals are reflected by different reflection points and go through different reflection paths,
the phase changes of such signals are independent of each other. In other words, different Ψ𝑑 (𝑡0 + Δ𝑡𝑘 ) are
independent of each other. Similarly, different Ω𝑑 (𝑡0 + Δ𝑡𝑘 ) are independent of each other.

Then turning 𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) into complex representation, it can be expressed as:
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𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) = 𝑅(𝑡0 + Δ𝑡𝑘 ) + 𝑖𝐼 (𝑡0 + Δ𝑡𝑘 )

𝑅(𝑡0 + Δ𝑡𝑘 ) = 𝐴𝑠1

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0) cos(Ψ𝑑 (𝑡0 + Δ𝑡𝑘 )) +𝐴𝑠2

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0) cos(Ω𝑑 (𝑡0 + Δ𝑡𝑘 ))

𝐼 (𝑡0 + Δ𝑡𝑘 ) = 𝐴𝑠1

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0) sin(Ψ𝑑 (𝑡0 + Δ𝑡𝑘 )) +𝐴𝑠2

𝐷∑︁
𝑑=1

𝛼𝑑 (𝑡0) sin(Ω𝑑 (𝑡0 + Δ𝑡𝑘 ))

𝑅(𝑡0 + Δ𝑡𝑘 ) and 𝐼 (𝑡0 + Δ𝑡𝑘 ) are the sum of two orthogonal parts, respectively. Then for each orthogonal part, it is
also the sum of multiple cosine or sine functions, which can be further regarded as the sum of multiple identically
distributed independent variables with zero mean. According to the Central Limit Theorem [6] , the distribution
of 𝑅(𝑡0+Δ𝑡𝑘 ) and 𝐼 (𝑡0+Δ𝑡𝑘 ) shall follow a zero-mean normal distribution 𝑅(𝑡0+Δ𝑡𝑘 ) ∼ 𝑁 (0, 𝜎 (𝑡0)2), 𝐼 (𝑡0+Δ𝑡𝑘 ) ∼
𝑁 (0, 𝜎 (𝑡0)2), where 𝜎 (𝑡0) is expressed as:

𝜎 (𝑡0) =

√√√
(𝐴2

𝑠1 +𝐴2
𝑠2 )

𝐷∑︁
𝑑=1

𝛼2
𝑑
(𝑡0)/2 + 𝜂, (7)

where 𝜂 is the variance of Gaussian noise. And the variance parameter 𝜎 (𝑡0) is referred to as DCM-CSI,
our novel metric for through-wall discrimination. Then based on Equation 7, we can obtain the following
four properties of 𝜎 (𝑡0) for human sensing:

• When there is no human movement (i.e., the number of dynamic signals equals to zero), 𝜎 (𝑡0) indicates the
level of environmental noise and its value is small.

• 𝐴𝑠1 , 𝐴𝑠2 are amplitudes of merged static signals on two antennas. In a specific environment, they are usually
constant and do not change over time. For different environments, we can adjust the amplitude of each
antenna by adding or subtracting a value to maintain a fixed value for 𝐴𝑠1 , 𝐴𝑠2 [26].

• When a human target moves from one side of the wall to the other side, direct (indirect) dynamic signals
change into indirect (direct) ones, but the overall size of 𝐷 remains the same.

• The amplitude 𝛼𝑑 (𝑡0) depends on the path length of the dynamic signal and the occlusion by other objects
(e.g., walls). Compared with direct signals, the amplitude of indirect signals significantly attenuates because
of the wall’s occlusion, which would introduce a significant change on 𝛼𝑑 (𝑡0). After the square operation,
this change will dominate 𝜎 (𝑡0) and present strong distinction between direct and indirect signals.

These four properties relate the change of human-introduced dynamic signals with the change of DCM-CSI. In
order to utilize DCM-CSI to differentiate direct and indirect signals, the remaining question is how to obtain
𝜎 (𝑡0) from CSI. Here, we would simultaneously combine 𝑅(𝑡0 + Δ𝑡𝑘 ) and 𝐼 (𝑡0 + Δ𝑡𝑘 ) to calculate 𝜎 (𝑡0).

From previous derivation, we know that both 𝑅(𝑡0+Δ𝑡𝑘 ) and 𝐼 (𝑡0+Δ𝑡𝑘 ) follow zero-mean Normal distributions,
and share the same variance 𝜎 (𝑡0). As 𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) is composed of these two independent components, the

(a) PDF of 𝑅 (𝑡0) (b) PDF of 𝐼 (𝑡0) (c) PDF of |𝑥 (𝑓 , 𝑡0) |

Fig. 2. Probability Distribution Function (PDF) of 𝑅(𝑡0), 𝐼 (𝑡0) and |𝑥 (𝑓 , 𝑡0) |
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absolute value of 𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) will follow a Rayleigh distribution with a parameter of 𝜎 (𝑡0) [52]. To demonstrate
that, we have collected 2s samples of conjugate-multiplying CSI corresponding to the dynamic signals generated
by human in-situ rotation. Figure 2 shows the Probability Distribution Function (PDF) of 𝑅(𝑡0), 𝐼 (𝑡0), |𝑥 (𝑓 , 𝑡0) |. We
can see that the distributions of 𝑅(𝑡0), 𝐼 (𝑡0) follow a zero-mean normal distribution with a similar variance 𝜎 (𝑡0).
Meanwhile, the distribution of |𝑥 (𝑓 , 𝑡0) | follows a Rayleigh Distribution with the parameter of 𝜎 (𝑡0). Therefore,
based on this statistical characteristic, we can obtain DCM-CSI by performing a maximum likelihood estimation
of the Rayleigh distribution over the CSI samples within a time window, which can be calculated as Equation 8.
In summary, by eliminating static signals and analyzing statistical characteristics of the conjugate-multiplying
CSI, we are able to extract the novel boundary sensing metric from conjugate-multiplying CSI. And combined
with Equation 7 and Equation 8, for the first time, we develop the mathematical relationship between human
movement and DCM-CSI, and theoretically explain DCM-CSI’s capability for precise boundary sensing.

𝜎 (𝑡0) =

√√√
1
2𝑀

𝑀∑︁
𝑘=1

|𝑥 (𝑓 , 𝑡0 + Δ𝑡𝑘 ) |2 (8)

3 EMPIRICAL STUDIES
In this section, via real-world experiments, we conduct an in-depth investigation of DCM-CSI’s capability in
discriminating between direct and indirect signals and demonstrate its effectiveness in precise sensing boundary
determination. In the following subsections, we first study the effect of signal path length and wall blockage on
DCM-CSI. Then, we compare DCM-CSI with other baseline features for direct and indirect signals discrimination.
Moreover, we verify the effectiveness of DCM-CSI by testing against different types of walls. Finally, we study
the impact of different antenna orientations, device locations/LoS lengths and channel settings with respect to
the DCM-CSI for direct/indirect signal discrimination.

3.1 Influence of Reflection Path Length and Wall Blockage of Dynamic Signals
As mentioned earlier, DCM-CSI is determined by the amplitude of dynamic signals, which in turn depends on
reflection path length and wall blockage. Here, we study the effect of reflection path length and wall blockage on
DCM-CSI. Specifically, we first conduct experiments using the ideal reflector (a metal plate), and then turn to real
setting by studying the influence of human movement.

3.1.1 Experimental Setup. As shown in Figure 3(a), we place a pair of Wi-Fi transceivers near the door of a
bedroom with a size of 5m x 4.7m. The transceivers are placed 185cm apart from each other, both equipped
with regular antennas, one for the transmitter and two for the receiver. For the ideal reflector experiments, we
use a metal plate with a size of 60cm x 60cm to simulate the human movement. A sliding rail is placed at the
perpendicular bisector of the transceivers. The metal plate is held by the sliding rail and controlled to move back
and forth through a controlling circuit. As for the experiments of human movement, a human volunteer will
walk along the bisector of the transceivers.

3.1.2 Influence of Metal Plate Movement. For the metal plate experiments, as shown in Figure 3(b), the sliding
rail is placed across the door with one end inside the room (5m away from LoS) and the other end outside the
room (2.5m away from LoS). At each 0.5m interval on the sliding rail, we vibrate the plate in-situ for 20 seconds
to record the CSI data. When the metal plate is inside the room, its vibration would introduce direct signals. Once
the metal plate moves outside the door, the reflection signals will become indirect due to the wall blockage. We
use a sliding window of 2s to calculate DCM-CSI from CSI data. Figure 4(a) presents the resulting DCM-CSI at
different locations. We can see that as the metal plate moves closer to the transceiver, the path length of dynamic
signals decreases, resulting in a larger amplitude, so the value of DCM-CSI gradually increases. However, when
the metal plate moves outside the door, DCM-CSI has a significant drop (at the location of -0.5m). This is because
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direct signals turn into indirect signals, which are much smaller in amplitude compared with direct signals. As the
metal plate continuously moves away from LoS, DCM-CSI gradually decreases due to a longer signal path length.
It is noticeable that even when the plate is 5m away from LoS inside the room, the gap of DCM-CSI between
direct and indirect signals is still large, indicating that it is the existence or absence of direct signals (rather than
reflection path length) that dominates DCM-CSI.

3.1.3 Influence of Human Movement . For the human movement experiments, a volunteer walks along the
bisector of the transceivers from inside the room (5m away from LoS) to LoS, and then from LoS to outside (2.5m
away from LoS), stopping at each interval of 0.5m. At each stopped location, the volunteer rotates around in place
for 20 seconds to record the CSI data. We use the same configuration as the metal plate experiments to calculate
DCM-CSI. Figure 4(b) the DCM-CSI values obtained at each location. Compared with the results of the metal
plate experiments, the DCM-CSI values of human rotation has a larger range span due to the larger displacement
during human rotation process. Similar to the metal plate experiments, DCM-CSI increases gradually when the
volunteer gets closer to the LoS. Once the volunteer steps outside the door, direct signals turn into indirect ones
which in turn causes a drop in DCM-CSI. And for human target movement, the gap between direct and indirect
signals remains clear when a person rotates even 5-meter away from LoS. Therefore, for an ordinary-sized room,
our proposed metric (DCM-CSI) can be adopted to effectively determine the sensing boundary with walls for
many human sensing applications.
For rooms that are much larger, such as warehouses and open-plan offices, we could place the transmitter

and receiver around the sensing boundary (e.g., wall or door). Only the transition process that a target moves
from one side of the boundary to the other side, could result a sudden change (rise or fall) in the DCM-CSI value
as shown in Figure 4(b). In contrast, if the target stays inside the warehouse and moves to the far end of the
warehouse, the value of DCM-CSI would only change gradually. Hence, by detecting the sudden rise or fall of
DCM-CSI that occurs when a target crosses the boundary, we can accurately determine whether the moving
target is currently located inside or outside the boundary.

3.2 DCM-CSI vs. Baseline Features for Discriminating between Direct and Indirect Signals
In order to sense human movement, previous works extract time-domain or frequency-domain features from raw
CSI, such as variance of amplitude [43], variance of phase difference between two antennas [13, 24], or power
of Doppler frequency shift [27]. Here, we compare DCM-CSI against these features in terms of discriminating
between direct and indirect signals. We use the same experimental setup of transceivers as shown in Figure 3(a),
and conduct experiments for both metal plate movement and human movement. The results are similar for metal

(a) Experimental environment

TX RX

185cm

250cm

500cm

Wall

Indirect signals

Direct signals

(b) Experimental setting

Fig. 3. Experimental setup: Influence of reflection path length and wall blockage of dynamic signals.
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(a) Metal plate vibration at different locations (b) Human rotation at different locations

Fig. 4. Influence of signal path length and wall blockage of dynamic signals on DCM-CSI.

plate and human target. Since we focus on human sensing, here we mainly discuss the comparison results of
human movement. Metal plate results are included in the Appendix.

In order to compare these features in terms of discriminating between direct and indirect signals, as shown in
Figure 5, we have conducted three groups of experiments at different positions (𝐴, 𝐵, and 𝐶). For each group
of experiments, we collect 20 seconds of CSI data for each of three different scenarios: (1) no dynamic signal
(static scenario): the sensing person is still; (2) direct signals: the sensing person is inside the room, 3m away
from LoS, and rotating in-situ; and (3) indirect signals: the sensing person is outside the room, 70cm away from
LoS, and rotating in-situ. For each experiment, four types of features are extracted from CSI Data: (i) standard
deviation of CSI amplitude (STD of amplitude); (ii) standard deviation of CSI phase difference between two
antennas (STD of phaseDif); (iii) power of Doppler frequency shift (Doppler Power); and (iv) DCM-CSI. In each
group of experiments, we conduct the comparison for these features under three cases corresponding to the no
dynamic signal, direct signals, and indirect signals. When utilizing STD of amplitude to sense the movement,
as shown in Figure 6(a)-6(c), we can draw a threshold line for all three groups of experiments to discriminate
between dynamic signals (both direct and indirect) and no dynamic signal, which shows its ability to sense human
movement. However, when turn to direct and indirect signals discrimination, it presents unstable performance
in different groups of experiments, where can not find a stable threshold line to discriminate between these
two cases. As for STD of phaseDif and Doppler power, the results are similar with that of STD of amplitude, as
shown in Figure 6(d)-6(f) and Figure 6(g)-6(i). We can draw a threshold line for these two features to discriminate
between dynamic signals and no dynamic signal, but it is difficult to find a threshold line to further differentiate
direct and indirect signals. This is because all of the above features either have no clear relationship with dynamic
signals or are insensitive to the amplitude change of dynamic signals. DCM-CSI, unlike these features, has a clear
gap between direct and indirect signals, as shown in Figure 6(j)-6(l). This indicates that we can easily find a stable
threshold line to discriminate between direct and indirect signals for all groups of experiments, thus enabling us
to obtain a clear sensing boundary utilizing walls.

TX RX

70cm

3m

A B C

50cm 50cm

Indirect signals

Direct signals

Fig. 5. Experimental setting: three different positions for metal plate movement and human movement experiments.
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(a) Position A (b) Position B (c) Position C

(d) Position A (e) Position B (f) Position C

(g) Position A (h) Position B (i) Position C

(j) Position A (k) Position B (l) Position C

Fig. 6. Performance comparison for human movement in different groups of experiments using different features: (a)-(c) STD
of amplitude; (d)-(f) STD of phase difference; (g)-(i) Power of Doppler shift; and (j)-(l) DCM-CSI.

3.3 Discriminating between Direct and Indirect Signals with Different Boundary Walls
In order to further study the generality of DCM-CSI in discriminating between direct and indirect signals, we
conduct experiments against different walls. Among all types of walls in our daily houses, we have considered
three common types [18]: exterior walls, bearing walls, and partition walls. Specifically, we study the generality
of DCM-CSI in direct/indirect signals discrimination given four typical walls, including one bounding wall, one
bearing wall, and two partition walls, as shown in Figure 7. One Wi-Fi transmitter and one receiver are placed in
front of each wall, and are 185cm apart from each other. The experiments are also done for both metal plate and
human target movement. Here we mainly discuss the experimental results of human movement. The metal plate
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results are similar and are presented in the Appendix. For each of the four walls, the experimental procedure is
the same as in 3.2. We also collect CSI data under three different cases (no dynamic signal, direct signals, and
indirect signals). Figure 8(a)-8(d) show the obtained DCM-CSI’s results for each wall. We can see that the gap
between direct and indirect signals is obvious for all walls. Even for thin partition wall [31] (e.g., Partition wall2),
DCM-CSI still works well for direct and indirect signals discrimination. Additionally, apart from these typical
daily walls, we also study the DCM-CSI’s performance with other two boundary materials: extreme thin partition
wall(40mm) (Figure 7(e)) and wooden furniture (Figure 7(f)) . Correspondingly, Figure 8(e)-8(f) show the obtained
DCM-CSI’s results for the two types of boundary materials, respectively. Although the attenuation of the thin
partition wall and wooden furniture are weaker than that of the brick wall, we can still clearly distinguish between
direct and indirect signals. In summary, for most exterior walls, bearing walls, partition walls and relatively large
furniture in our daily homes, DCM-CSI can generally be used to obtain a precise sensing boundary.

3.4 Discriminating between Direct and Indirect Signals with Different Antenna Orientations
In order to study the impact of antenna orientation on the direct/indirect signal discrimination of DCM-CSI, we
conduct experiments with different antenna configurations. Due to the separation of transceivers, we take into
account the antenna orientations for both transmitter and receiver. Since the antenna orientation can be vertical
or horizontal, we studied all four types of antenna orientation combinations in the experiment. As shown in
Figure 9, these antenna configurations include: (A) both the transmit and receive antennas are vertical; (B) both
the transmit and receive antennas are horizontal; (C) the transmit antenna is vertical and receive antennas are
horizontal; and (D) the transmit antenna is vertical, while one of the receive antennas is vertical and the other
one is horizontal. The experimental setting is shown in Figure 10(a). For each type of antenna configuration,
we collected 20 seconds of CSI data under direct and indirect signal scenarios. DCM-CSI is calculated from the
collected CSI samples. The obtained DCM-CSI is illustrated in Figure 10(b). We can see clear gaps between direct
and indirect signals for all antenna configurations. It is worth noting that DCM-CSI becomes smaller for antenna
configurations C and D, which is the result of power loss caused by the polarization mismatch between the
transmit and receive antennas [41]. However, since the gap is still clear, we can easily choose a suitable threshold
for direct/indirect discrimination when utilizing different antenna configurations.

(a) Exterior wall (brick mate-
rial;370mm)

(b) Bearing wall (concrete mate-
rial;240mm)

(c) Partition wall1 (plasterboard ma-
terial;150mm)

(d) Partition wall2 (plasterboard ma-
terial;100mm)

(e) Extreme thin partition wall
(single-layered plasterboard;40mm)

(f) Wooden furniture

Fig. 7. Experimental environments with different types of walls.
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(a) Exterior wall (b) Bearing wall (c) Partition wall1

(d) Partition wall2 (e) Extreme thin partition wall (f) Wooden furniture

Fig. 8. Using DCM-CSI for direct/indirect signal discrimination for human target movement against different walls.

3.5 Discriminating between Direct and Indirect Signals with Different Device Locations/Distances
Apart from antenna orientation, we also studied the impact of different device locations and LoS lengths in terms
of direct and indirect signal discrimination. As shown in Figure 11(a), in a typical bedroom environment, each
pair of transmitter and receiver is deployed at different locations, being apart from each other with the LoS length
varying from 1m to 5m. The wall on which the door is located serves as the sensing boundary. The deployment
is guided by the guidelines in Section 6.1. For each pair of transceivers with a specific LoS length, we collected
CSI data with the target rotating in the star-marked location (colored in red) for direct and indirect scenarios.
The obtained DCM-CSI values are presented in Figure 11(b). As we can see, DCM-CSI works well for direct and
indirect discrimination when transmitters and receivers are deployed at different locations along with different
distances, thus demonstrating the generality of DCM-CSI for boundary sensing.

3.6 Discriminating between Direct and Indirect Signals with Different Channels and Sampling Rates
To further study the impact of different channels and sampling rates, we have conducted experiments to compare
between 2.4GHz and 5GHz along with different sampling rates. Experiments are carried out on four kinds of
channel settings: (1) 5GHz at a sampling rate of 200 packets/s; (2) 2.4GHz at a sampling rate at 200 packets/s; (3)
5GHz at a sampling rate of 2000 packets/s; and (4) 2.4GHz at a sampling rate of 2000 packets/s. The experimental

(a) Antenna configuration (A) (b) Antenna configuration (B)

(c) Antenna configuration (C) (d) Antenna configuration (D)

Fig. 9. Different antenna configurations
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TX RX

70cm

3m

185cm

(a)
(b)

Fig. 10. (a) Experimental setup for different antenna configurations; and (b) direct and indirect signal discrimination for
different antenna configurations

setup is the same as the one shown in Figure 10(a). For each kind of channel setting, CSI data are collected under
the three different scenarios, including no dynamic signals, direct signals and indirect signals. Then, DCM-CSI
is extracted from the collected CSI samples and the results are shown in Figure 12. We can see that the gap
between direct and indirect signals is clear for all settings, which demonstrates the effectiveness of DCM-CSI
under different channel and sampling rate settings.
With the experimental results above, we demonstrate the generality and effectiveness of DCM-CSI for direct

and indirect signal discrimination. We believe that for many human sensing applications, DCM-CSI can be utilized
to determine the sensing boundaries with daily walls. To be specific, by utilizing the significant change and related
context of DCM-CSI when human target crosses a wall, we can discriminate between inside-wall and outside-wall
activities, thus obtaining clear sensing boundaries with common walls. We name this DCM-CSI based sensing
boundary determination method as WiBorder.

4 CASE STUDIES
Building upon WiBorder, in this section, we present two case studies. The first one is intrusion detection, a
real-time system with only one pair of commodity Wi-Fi transceivers, yet still achieves high accuracy of intrusion
detection. The second one is area detection, a real-time system deployed in real-life environments, which leverages
one transmitter and multiple receivers to cover a larger area and more rooms.

4m

3.2m

1 m

4 m

(a)
(b)

Fig. 11. (a) Experimental setup for different device locations and LoS lengths; and (b) direct and indirect signal
discrimination for different device locations and LoS lengths
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(a) 5G at a sampling rate 200 packets/s (b) 2.4G at a sampling rate of 200 packets/s

(c) 5G at a sampling rate of 2000 packets/s (d) 2.4G at a sampling rate of 2000 packets/s

Fig. 12. Direct and indirect signal discrimination under different channel settings

4.1 Case Study 1: Intrusion Detection
4.1.1 Motivation and Targeted Intrusion Type. Intrusion detection is critical for many smart home applications
such as asset protection, home security, and eldercare. The goal is to detect whether an intruder has broken
into a house or room. Many previous works [20, 50, 53, 56, 59] have attempted to address intrusion detection
by detecting human motion within the coverage of Wi-Fi signals. Due to the long sensing propagation range
and through-wall capabilities of Wi-Fi signals, these Wi-Fi based motion detection systems have a very large
sensing range and a fuzzy sensing boundary. However, real-life intrusion detection requires accurate detection
of a human target’s presence within a specific area of interest, ideally drawing a clear boundary to determine
whether a target has entered a monitoring area or not. Without such a clear line as the sensing boundary, when
directly adopting these motion detection systems for real-word intrusion detection, motions outside the area
(e.g., hallway walking) can cause lots of false alarms. Apart from avoiding these false alarms, an ideal intrusion
detection system should give an alert as soon as the intrusion takes place to ensure timely reaction. In this work,
we focus on the transient moment of an intruder entering the house. Leveraging WiBorder’s capability of drawing
a clear sensing boundary, we develop an intrusion detection system that is able to detect intrusions in a timely
manner while avoiding false alarms caused by outside interference. Intrusion can happen in many different ways,
and here we aim to detect the most common ways of intrusion through doors.

4.1.2 Experimental Setup. To build our intrusion detection system, we employ two mini-PCs equipped with
cheap off-the-shelf Intel 5300 Wi-Fi cards as the transmitter and the receiver. Two antennas are attached to the
receiver, and one to the transmitter. We use the CSI Tool developed by Halperin [14] to collect CSI samples on the
receiver at the rate of 200 samples per second. Both the transmitter and receiver work on the 5GHz band with a
20MHz channel. To evaluate the performance of the intrusion detection system, we conduct experiments in three
real-life indoor environments: a typical bedroom, an office room, and a studio in a nursing home, with the layouts
shown in Figure 13. In each environment, we place the transmitter and the receiver at different corners inside
the room. A web camera is deployed outside the room and points towards the door to record the ground-truth.
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(a) Bedroom (b) Office room (c) Studio in a nursing home

Fig. 13. Experimental environments for intrusion detection.

The wall around receiver creates the difference between direct and indirect signals when the human target is
inside or outside the room. Once an intruder enters the door, indirect signals will turn into direct ones, causing a
significant change in DCM-CSI and indicating an intrusion event. The system simply compares the DCM-CSI
with a predefined intrusion detection threshold to detect the intrusion event. All of the three environments share
the same threshold value of 40 to detect intrusion.

4.1.3 Data set and Metrics. To fully evaluate the performance of the intrusion detection system against different
individuals, we recruited 10 volunteers to perform various intrusion sessions over three weeks. These volunteers
include 3 female and 7 male, aged between 20 and 38, with a height range of 155cm to 185cm, and a weight range
of 49kg to 100kg. None of them had prior knowledge of our system. Each intrusion session consists of a sequence
of actions. During a single session, a volunteer starts from outside the room, freely performing any activities
such as walking, running, or jumping before crossing the door and entering the room in whatever manner
he/she likes. Then, after walking in the room for a while, he/she leaves the room and walks away. The whole
session lasts for about 30 to 50 seconds, and the entire process is recorded by the pre-deployed camera. During
all experiments, we deliberately kept the door open and let other people pass by to further test the robustness of
our system. In total, we have collected 1,324 sessions, which consist of 1,324 intrusion events and 1,324 cases of
outside activities. In order to synchronize the ground-truth video with the CSI samples, the transmitter’s program
outputs a timestamp every 0.2s when transmitting the CSI data. Both the timestamp and ground-truth video are
recorded in an auxiliary video file by the screen recorder. An example is shown in Figure 14, where each frame of
the auxiliary video consists of a screenshot of the video stream and the CSI timestamp stream. Therefore, for
each intrusion instance, we can check the video file to obtain the corresponding timestamp of the CSI data, thus
achieving synchronization between the CSI data and ground-truth video. Moreover, we have drawn a marked
line at the door frame to help us obtain the ground-truth timestamp when a target crosses the line to enter the
room. We use a sliding window of 2s to calculate the DCM-CSI. The sliding window slides at a step size of 0.05s,
so we can make an intrusion decision every 0.05s. And in order to fully evaluate our intrusion detection system,
we use TPR and FPR to respectively quantify intrusion detection rate and false alarm rate as shown in Figure 15.

Fig. 14. An example frame of
auxiliary video for synchronization

𝑇𝑃𝑅 =
# 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑠 𝑜 𝑓 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛

# 𝑜 𝑓 𝑡𝑖𝑚𝑒𝑠 𝑜 𝑓 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑒𝑑

𝐹𝑃𝑅 =
# 𝑜 𝑓 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑠 𝑜 𝑓 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛

# 𝑜 𝑓 𝑡𝑖𝑚𝑒𝑠 𝑜 𝑓 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑜𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑒𝑑

Fig. 15. Metrics for evaluation
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(a) (b)
Fig. 16. (a) Impact of different environments; and (b) impact of different participants

(only intrusion alarms reported within 1s are considered valid).

4.1.4 Evaluation. Our intrusion detection system achieves an overall accuracy of 99.4% TPR and 0.68% FPR for all
intrusion sessions. To be specific, in terms of the system’s missed reports (100%-99.4%), all of the 1,324 intrusion
events are detected by our system. There exist missed reports only because their detection delay is more than
1s, which are regarded as unsuccessful reports. As for reported false alarms (0.68%), they only come from the
large-scale activities when the target jumps or runs strenuously outside but near the door, which might cause a
significant change of DCM-CSI exceeding the detection threshold. For small-scale activities, the DCM-CSI change
is very small due to a relatively small amount of direct signals. Thus, small-scale activities will not introduce
any false alarms. In conclusion, thanks to our robust boundary determination scheme, we eliminate almost all
missed alarms and false alarms, and achieve high TPR and low FPR at the same time, which advances real-life
deployment of Wi-Fi based intrusion detection system.
Impact of different environments. To further evaluate the robustness of our system against different

environments, we compare experimental results in three different indoor environments, and show the TPR and
FPR of each environment in Figure 16(a). We can see that our system achieves good performance for all three
environments. And it is worth noting that all of the three environments share the same detection threshold value
of 40, which means that this threshold value is robust and insensitive to environmental changes.
Impact of different participants. Since different people have different shapes and gait styles, the way

they intrude a room could be different. Here, we also evaluate the robustness of our system against individual
diversity. The system performance of different participants are shown in Figure 16(b). We can see that, for
different volunteers, our intrusion detection system can achieve higher than 97% TPR and lower than 2% FPR.
This indicates that our system can maintain high performance on different intruders.

Impact of tolerated detection delay. We also study the impact of different tolerated detection delay on our
system performance. Since a false alarm is counted whenever a non-intrusion activity is incorrectly reported as
an intrusion, FPR is not affected by the detection delay. Thus, only TPR is influenced by such tolerated detection
delay. We tested our system against different tolerated decision delay from 0.4s to 2s with a step size of 0.2s, and
the results are shown in Figure 17. It shows that the greater tolerated delay, the better performance of our system

Fig. 17. Impact of tolerated detection delay (100% TPR achieved when delay is more than 2s).
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(a) (b)
Fig. 18. (a) Impact of window size on DCM-CSI ; and (b) impact of intrusion detection threshold.

achieves. When the tolerated detection delay is greater than 2s, our system achieves a TPR of 100% for intrusion
detection, which means we did not miss any intrusion action. In our system, considering the tradeoff between
timeliness and TPR, we set 1s as the tolerated detection delay.
Impact of window size for DCM-CSI calculation. Since DCM-CSI is calculated from CSI samples collected

within a time window, its value is related to the window size. We used the window size of 2s to present results
discussed above, and here we evaluate the impact of different window size on system performance. Figure 18(a)
shows the ROC curve of the system performance for different window sizes ranging from 0.4s to 4s with a step
size of 0.2s. As the window size increases from 0.4s to 2s, the TPR of our system is stable and the FPR gradually
decreases, indicating fewer false alarms and better performance. A sliding window with a larger window size
contains more CSI samples and thus can better represent the statistical characteristics of DCM-CSI, resulting
in a more accurate DCM-CSI value. Furthermore, a larger sliding window for calculating DCM-CSI is able to
average out abnormal CSI samples and thus reduce the impact of environmental noises. When the window size
continually becomes larger more than 2s, although the FPR gets better, the TPR of intrusion detection starts to
get worse. That is because too large window size will cause an increase in the delay of intrusion detection. With
more intrusion events detected after one second, the TPR of the system will gradually decrease. In the current
setting, we choose a window size of 2s for intrusion detection. Other applications can certainly adjust this size to
meet their needs.
Impact of intrusion detection threshold. To detect intrusions, we have utilized a threshold to discriminate

between inside activities and outside activities. Here, we also vary this threshold from 26 to 52 to study its impact
on system performance. As shown in Figure 18(b), when the threshold value is small, the system maintains high
TPR and FPR. As the threshold becomes larger, both TPR and FPR decreases. In general, the system achieves
better performance with both high TPR and low FPR, when the threshold value lies within the interval [35-45].
Here, we choose 40 as the intrusion detection threshold value for our system.

4.2 Case Study 2: Area Detection
4.2.1 Experimental Setup. Based on WiBorder, we further built an area detection system, and deployed it in two
different environments: a studio in a nursing house and a smart home. As shown in Figure 19(a) and Figure 19(d),
the nursing studio has three areas: bathroom, hallway, and bedroom; and the smart home has four areas: bedroom,
bathroom, living room, and kitchen. In order to achieve accurate area detection, we deployed one transmitter and
several receivers in each environment with one receiver per area and placed around the corner. The GUI of our
systems for the two environments are shown in Figure 19(b) and Figure 19(e), respectively.

4.2.2 Multi-Device Fusion. Recall that direct signals are defined as the signals that are directly reflected by a
moving target when propagating from a transmitter to a receiver. Indirect signals are the ones that are reflected by
a moving target but penetrated through walls along their propagation. When the human target switches between
different areas, the direct/indirect signals’ situations are different due to different conditions of wall blockage.
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By taking advantage of these differences, we are able to extract DCM-CSI metrics from all receivers and obtain
global knowledge about the human target’s area. We encode the situations of having indirect or direct signals
by assigning 0 or 1 to each receiver. We also define a set of valid state transition encoding that trigger the area
state updates. In other words, the system updates its area state only when the current encoding gathered from
different receivers matches one of the defined valid transition encoding. Otherwise, the system remains in its
previous area state. Take the smart home as an example (i.e., Figure 19(a)), we depict its Area-Transition-Diagram
for better illustration, as shown in Figure 19(f). Suppose a sensing target who is inside the living room, wants to
enter the bedroom. The target needs to move close to the bedroom door (i.e., the boundary between the living
room and the bedroom). As shown in Figure 20(a), when he/she gets close to the door but is still outside the
bedroom, RX3 and RX4 receive direct signals, while other devices receive indirect signals. For this scenario, the
state encoding can be represented as (RX1=0,RX2=0,RX3|RX4=1,RX5=0) (i.e., 0010) where “|" refers to “or". Right
after he/she crosses the door and enters the bedroom, no direct signals reach RX3 or RX4 due to the blockage
of the bedroom walls. Only RX1 receives direct signals as shown in Figure 20(b). The current state encoding
becomes (RX1=1,RX2=0,RX3|RX4=0,RX5=0) (i.e., 1000). Since such a new encoding matches one entry of our
defined transition encoding, the system is triggered to update the area state of the sensing target as “inside

(a) (b)
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Fig. 19. (a) Area division for the nursing studio with multiple devices; (b) graphical user interface for the nursing studio; (c)

Area-Transition-Diagram for the studio; (d) area division for the smart home with multiple devices; (e) graphical user
interface for the smart home; and (f) Area-Transition-Diagram for the smart home.

(a) (RX1=0,RX2=0,RX3 |RX4=1,RX5=0) (b) (RX1=1,RX2=0,RX3 |RX4=0,RX5=0)

Fig. 20. Direct and indirect signal encodings at different locations
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(a) Confusion matrix for studio (b) Confusion matrix for smart home (c) Accuracy of different participants

Fig. 21. Performance of the area detection system.

the bedroom". If the target walks to the bed, then lies on the bed and stays still, the state encoding becomes
(RX1=0,RX2=0,RX3|RX4=0,RX5=0) (i.e., 0000) since there are no dynamic signals. As “0000" does not match any
transition encoding we defined, the system will remain in the area state of “inside the bedroom". Therefore, the
area state is updated right after the target crosses the boundary, while the motions taken inside an area does
not trigger any state updates. Similarly, in a complex area with multiple corners, before the target reaches the
corner, the system has been updated to the correct area state when he/she crosses the boundary. Thus, using the
Area-Transition-Diagram, we are able to accurately determine a human target’s area once we have gathered 0/1
encoding from all receivers.

4.2.3 Data Set. To evaluate the performance of our system, for each environment, we have asked 5 volunteers
to conduct daily activities for an aggregated duration of 1200 minutes. We collected 12 sets of activities for each
volunteer, and each lasts for about ten minutes. During each set, a volunteer can freely switch between different
areas, or perform various activities in each area, such as going to bed in the bedroom, putting clothes on/off in
the hallway; washing hands in the bathroom, watching TV in the living room, etc. To fully evaluate the system,
the volunteers are advised to switch between areas as much as possible. In total, there are 4390 times of area
switches in the 1200 minutes. A synchronized ground-truth video stream is recorded for each set of activities. For
every 0.05s, our system will output a line of text describing the human area state, and at the same time, records
the result to a log file. Thus, for each set of data, we have a result log file corresponding to the whole process.

4.2.4 Evaluation. The system performance of area detection in two environments are presented in the form of
confusion matrix, as shown in Figure 21(a) and Figure 21(b), respectively. Element 𝑝𝑖, 𝑗 represents the percentage
of time when the human target is in fact in area 𝑖 but being estimated in area 𝑗 . It is worth noting that there is a
transition area in each environment, through which one must pass before reaching another area, e.g., hallway
in nursing studio and living room in smart home. In the presence of transition areas, we know that the human
target is not able to switch directly between bedroom and bathroom/kitchen. Thus, from the confusion matrix,
we notice that all the mistakes are caused by switches between adjacent areas. Since an area state update is
triggered by the predefined state transition encoding, the system only updates the area state right after the target
crosses a boundary (i.e., switch between adjacent areas). Activities inside each area will not trigger any update
and therefore will not cause false alarms. The false alarms merely come from the delay of area state update
when the target switches between adjacent areas. As the hallway and living room are both transition regions
in the two environments, they suffer from delays in both hallway (living room)–bedroom and hallway (living
room)–bathroom switches. Hence, their accuracy is slightly lower than that of the other areas. Apart from the
evaluation of different environments, we also evaluated our system against individual diversity, and the system
performance holds consistency for different individuals as shown in Figure 21(c). Overall, our system achieves a
good area detection accuracy of up to 97.03%.
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Fig. 22. Two people in two different areas.
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Tracking.

Fig. 24. Area detection results for two people: without (left) or with (right) high-level semantics.

4.2.5 Feasibility Study of Multi-area Tracking of Active People. The experiments above have shown that our area
detection system achieves good performance when determining a single target’s area. When more than one people
are active in different areas at the same time, our system can also provide their area information, thus enabling
multi-area tracking. Taking two persons for example, assume one person is active inside the bathroom, and the
other one is in the center of the hallway, as shown in Figure 22. The person in the hallway would introduce direct
signals on RX1 but indirect signals on RX2 and RX3. Meanwhile, the person in the bathroom would introduce
direct signals on RX2 but indirect signals on RX1 and RX3. Since for each receiver, the power of received direct
signals greatly surpasses (i.e., dominates) the power of received indirect signals, we can encode the current
direct/indirect situations of the three receivers as (1,1,0). Likewise, we can depict the Area-Transition-Diagram
for multi-area tracking as shown in Figure 23. To validate, we asked two volunteers to perform daily activities
for 250 continuous seconds, and obtained the multi-area tracking results based on the encoding table above, as
shown in Figure 24(a). There is some ambiguity in the figure between two situations: (1) when both people are
active in the bedroom and (2) when one is active in the hallway and the other one is active in the bedroom. This
is because they share the same transition encoding. Such ambiguous area states can be further eliminated by
utilizing more devices or combining high-level context information. For example, since a person cannot move
directly from the bathroom to the bedroom, the state of one person in the bedroom and the other in the bathroom
cannot directly turn into the state of both people in the bedroom. Therefore, coupling with this context, our
system can correct the first and third ambiguous states, as shown in Figure 24(b). In summary, based on WiBorder,
our area detection system shows its potential in multi-area tracking for multiple active persons. Although further
research is needed, our work is one step further towards addressing the challenging multi-user sensing problem.
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5 RELATED WORK
In recent years, various human sensing techniques have been developed, including inertial sensors-based [5, 49],
camera-based [32, 34], sound-based [8, 44, 55], visible-light based [17, 22], ambient-sensors based [16, 30, 37],
RFID-based [29, 46], Infrared-based [19, 57] and Radar-based [2–4, 9–11] approaches. Inertial sensor-based
methods require the target to carry or wear a special-purpose device for sensing. Camera-based technologies
may raise privacy concerns and do not work well under poor lighting conditions. Sound-based techniques are
vulnerable to acoustic noise and have limited coverage. Visible light methods can only be applied in line-of-sight
scenarios. Ambient sensor-based solutions usually require dense deployment, which incurs higher cost for both
installation and maintenance. Infrared-based sensing systems can be utilized to achieve the boundary sensing
by deploying multiple transceiver pairs at key entrances. Instead of utilizing multiple transmitters, Wi-Fi based
systems only require one transmitter and multiple receivers. Moreover, those Wi-Fi devices can be also utilized
to support other sensing applications, such as respiration detection [28, 58, 60], gesture recognition [23],activity
recognition [7, 15, 40, 43, 45], etc. UWB radars are dedicated devices with much higher cost thanWi-Fi transceivers.
It’s true that UWB radars can achieve high-precision localization and boundary crossing detection. However, due
to the limited sensing range and angle, each UWB radar needs to face towards the targeted sensing boundary in
order to achieve precise boundary determination. For multi-boundary determination or supporting more sensing
applications (e.g., activity recognition), multiple UWB radars need to be deployed in order to cover the entire
home, leading to much higher cost. Different from UWB radars, Wi-Fi devices are ubiquitous for communication
in home environments. Various Wi-Fi-enabled home appliances (e.g., router, TV, refrigerator) could be reused
to support various applications such as boundary sensing. Next, we focus on device-free human sensing using
commodity Wi-Fi devices and discuss Wi-Fi based works that are most relevant.

5.1 Device-free Human Motion Detection using Wi-Fi
Wi-Fi signal has been used to detect human motion within the coverage of Wi-Fi devices, and a number of
techniques have been proposed. Depending on the features extracted from Wi-Fi signal, these techniques can be
categorized as time-domain or frequency-domain based methods. Time-domain based methods extract features
such as the variance or correlation of Wi-Fi signal to detect human motion. For example, earlier solutions detect
human motion using the variance of RSSI [20, 56]. CARM [43] employs variance of CSI amplitude to detect
motion for activity recognition. FIMD [53] and WiDetect [59] utilize correlation of CSI amplitude over time for
motion detection. PADS [36] combines both the phase and amplitude information of CSI to improve motion
detection accuracy. DeMan [50] not only detects human motion but also detects the existence of a still human
based on respiration sensing. MoSense [13] and AR-Alarm [24] utilize variance of the phase difference for human
motion detection. As human motion introduces Doppler effect on Wi-Fi signal, it can be detected by capturing
this Doppler effect in the frequency domain. WiVit [27] utilizes power of Doppler frequency shift as the feature
to effectively detect human motion.

All of these methods aim to detect human motion within the sensing range of Wi-Fi devices. Due to the long
propagation range of Wi-Fi signals [48], Wi-Fi based sensing systems have a very large sensing range and a
fuzzy sensing boundary. However, in real life, Wi-Fi based human sensing applications usually require accurate
detection of a human target’s presence within a given area of interest, ideally drawing a clear line to determine
whether a human target has entered a sensing area or not. Without such a clear line as the sensing boundary,
inference from outside the area of interest can cause lots of false alarms. Therefore, instead of focusing on
human motion sensing in a fuzzy range, our work aims to determine a clear Wi-Fi based sensing boundary using
common walls, which is orthogonal to current Wi-Fi based human sensing applications and in fact makes these
applications feasible in the real world by defining a specific sensing area of interest.
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5.2 Device-free Human Localization using Wi-Fi
Wi-Fi signal has also been used to achieve device-free human localization in indoor environments. Since the
concept of device-free localization was first introduced in 2007 [56], many device-free localization systems have
been proposed, which can be categorized as fingerprinting-based methods and geometric mapping-based methods.
Among the fingerprinting-based methods, Nuzzer [39] and Ichnaea [38] use RSSI signature as the fingerprint for
device-free localization. Pilot [54] and MonoPHY [1] systems employ finer CSI information as the fingerprint
to improve accuracy. LiFS [42] utilizes the Fresnel model to improve the accuracy of localization when the
target is on the LoS path of the transceivers. Although these approaches work well when the human target is
stationary, they face a great challenge in dealing with moving targets. Geometrical mapping-based methods, such
as Dynamic-MUSIC method [25] and IndoTrack system [26], employ the Angle-of-Arrival (AoA) information
to locate and track the target. WiDar [35] tracks a target based on the amplitude of Doppler frequency shift
with multiple devices. SiFi [12] utilizes only one AP with multiple antennas to locate the target. However, all
these works require the communication link of LoS propagation to reduce the fluctuations of signal feature.
Although much progress has been made in the field of Wi-Fi LoS identification [51, 61], the 90th percentile error
of state-of-the-art device-free human localization solutions is still as high as 2m [12]. Rather than obtaining
inaccurate location information, our work aims to solve the critical problem of accurately determining whether a
human target has crossed a specific boundary line and entered an area of interest.

6 DISCUSSION
In this work, we propose WiBorder, a method for accurate Wi-Fi sensing boundary determination, which can
be applied to state-of-the-art Wi-Fi sensing applications. In this section, we first introduce some deployment
guidelines for those Wi-Fi sensing applications which require a clear sensing boundary in their implementation.
Then we briefly discuss several directions for future research.

6.1 Deployment Guidelines
The existence of walls plays an important role in WiBorder, and actually, it is the blockage of Wi-Fi signals by
walls that enables WiBorder to achieve two-side discrimination. Specifically, the sensing boundary we define
in this paper is shaped by the line formed by the location of the RX and the endpoint of the partial wall or
objects. For different layouts in different environments, the signal blockage condition usually differs. As such, we
need some guidance in terms of where to place the Wi-Fi transceivers given specific indoor layout and sensing

(a) (b)
(c)

Fig. 25. (a) Space division when the wall is leveraged as a sensing boundary; (b) transceivers deployment for single-boundary
determination: blue area for transmitter deployment and red area for receiver deployment; and (c) transceivers deployment

for multiple-boundary determination: blue area for transmitter deployment and red area for receivers deployment.
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demand, either theoretically or empirically. We have developed two guidelines for WiBorder deployment, which
are illustrated by a simple example in Figure 25(a). Assume a space is divided by a common wall into two parts:
inside-wall space and outside-wall space, wherein the inside-wall space serves as the target sensing area. Then,
in order to leverage the wall or its extensions as a sensing boundary, one can deploy Wi-Fi transmitters and
receivers according to the following two guidelines:

(1) The Wi-Fi receiver is preferably deployed in the inside-wall space and not visible by a human target in the
outside-wall space.

(2) The Wi-Fi transmitter can be deployed either in the inside-wall space or outside-wall space, but it should
be visible by a human target when he gets into the inside-wall space.

Based on the above guidelines, we can quickly select the appropriate places to deploy the transmitter and receivers,
as shown in Figure 25(b), colored in blue and red. As for multi-room houses, WiBorder is also able to achieve
multiple-boundaries determination based on these two guidelines. As shown in Figure 25(c), by reasonably
deploying one transmitter and multiple receivers, the multiple boundaries can be formed by multiple walls in the
house. When it comes to the case that the LOS between a user and both the TX and RX is blocked by a object (e.g,
the sofa is moved in front of the TX in Figure 25(b)), one can make some minor deployment adjustment to satisfy
the deployment guidelines (e.g., place the TX in front of the sofa). Therefore, as long as deployment guidelines
are satisfied, we can always effectively detect the boundary crossing event when he/she enters the room.

6.2 Supporting Activity Recognition Systems
Besides the application of intrusion detection and area detection, WiBorder can also provide valuable context
information for activity recognition systems. For example, in our daily life, sleeping always happens in the
bedroom, whereas cooking usually happens in the kitchen. We can use area information reported from WiBorder
to help reducing the training size of such systems, since once we have the area information, we can greatly
reduce the classification complexity and improve recognition accuracy. Therefore, how to develop an activity
recognition system based on WiBorder is also worthy of future investigation.

6.3 Boundary Materials
In this work, we have demonstrated that DCM-CSI can be generally used to obtain a precise sensing boundary for
most exterior walls, bearing walls and partition walls in our daily homes. But for extremely thin or transparent
materials, such as glass partition, it is not as effective. This limitation is due to the weak attenuation effect of
these materials, and electromagnetic waves can easily pass through them. For these materials, one could jointly
utilize relatively large furniture (e.g., wooden bookcase) to act as a boundary. In the future, we plan to investigate
more materials and study the capability of DCM-CSI for boundary sensing under various scenarios.

6.4 Multi-person Sensing
Passive or device-free sensing of multiple persons is a well-known challenging problem. Although our area
detection system shows its potential in multi-area tracking for multiple active persons, further research is needed
for multi-person sensing. When there are multiple targets, each non-still target will generate multiple dynamic
signals to the receiver, so the signal received at the receiver is a superposition of multiple targets. Due to the
small Wi-Fi bandwidth (20MHz), it is extremely difficult for commodity Wi-Fi devices to separate these reflected
path signals and obtain the accurate number of targets. Area trajectory matching of different sensing targets is
also challenging. This is an important direction for our future work.
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7 CONCLUSION
Contactless sensing with pervasive Wi-Fi signal is a promising sensing approach in our daily lives. In real-life
environments, a lot of Wi-Fi based sensing applications require prior knowledge of the human’s presence in
the sensing area of interest. However, no prior solution exists to accurately determine whether a person has
entered a given area (i.e., no precise boundary sensing), which severely limits real-life adoption of these Wi-Fi
based sensing applications. In this paper, for the first time, we propose a precise Wi-Fi based sensing boundary
determination method, i.e., WiBorder, which leverages common walls in our daily life. WiBorder first applies
conjugate multiplication between two antennas’ CSI readings, which effectively eliminates the time-varying phase
offset in the raw CSI, and at the same time amplifies through-wall signal amplitude attenuation. By analyzing the
theoretical relationship between human movement and conjugating-multiplying CSI, we propose a novel metric
(DCM-CSI), which enables WiBorder to achieve through-wall signal discrimination. Finally, to demonstrate the
effectiveness of WiBorder, we have developed two case studies for real-life scenarios: (1) an intrusion detection
system that achieves 99.4% intrusion detection rate and 0.68% false alarm rate; and (2) an area detection system
that achieves 97.03% area detection accuracy. Moreover, we have conducted a feasibility study of multi-area
tracking, which shows WiBoarder’s potential in providing useful location information for multi-person sensing.
WiBorder can be a core and fundamental function module for many Wi-Fi based indoor sensing applications.
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A APPENDIX

A.1 DCM-CSI vs. Baseline Features for Discriminating between Direct and Indirect Signals (Metal
Plate Movement)

When comparing DCM-CSI against different motion detection feature, we also conducted the experiments with
metal plate movement. The experimental setup and procedure are the same as the human movement experiments,
except that the metal plate vibrates in-place while the human target self-rotates. Figure 26 shows the comparison
in three groups of experiments for different features. Similar to human movement, only DCM-CSI is able to
discriminate between direct and indirect signals. Apart from these high-level features, Figure 27 also shows the

(a) Position A (b) Position B (c) Position C

(d) Position A (e) Position B (f) Position C

(g) Position A (h) Position B (i) Position C

(j) Position A (k) Position B (l) Position C

Fig. 26. Performance comparison for metal plate movement in different groups of experiments using different features: (a)-(c)
Standard deviation (STD) of amplitude; (d)-(f) STD of phase difference; (g)-(i) Power of Doppler shift; and (j)-(l) DCM-CSI.
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(a) Amplitude at position A (b) Amplitude at position B (c) Amplitude at position C

(d) Phase difference at position A (e) Phase difference at position B (f) Phase difference at position C

(g) Differential amplitude at position A (h) Differential amplitude at position B (i) Differential amplitude at position C

Fig. 27. Visualization of amplitude and phase difference corresponding to the comparison of human movement in Figure 6 of
the Section 3.2.

raw CSI amplitude and phase difference corresponding to the comparison of human movement in Figure 6 of the
Section 3.2. Additionally, we also calculate the mean amplitude of the differential of the raw complex signals (i.e.,
1/𝑇 ∗∑𝑇−1

𝑖=0 |𝑆𝑡 − 𝑆𝑡−1 |) as shown in Figure 27. As we can see, unlike DCM-CSI, all of these feature are difficult to
differentiate the direct and indirect signals.

A.2 Discriminating between Direct and Indirect Signals with Different Walls (Metal Plate Movement)
When studying the generality of DCM-CSI against different walls, we also conducted the experiments with metal
plate. Figure 28 shows the obtained DCM-CSI’s results for each wall. We can see that the gap between direct and
indirect signals is obvious for all walls.
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(a) Exterior wall (b) Bearing wall

(c) Partition wall1 (d) Partition wall2

Fig. 28. Using DCM-CSI for direct/indirect signal discrimination for metal plate movement against different walls.
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