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Abstract—Bodyweight exercises are effective and efficient ways
to improve one’s balance, flexibility, and strength without ma-
chinery or extra equipment. Prior works have been successful in
monitoring aerobic exercises and free-weight exercises, but are
not suitable for ubiquitous bodyweight exercise monitoring in
order to provide fine-grained repetition counting information in
each exercise set. In this work, we propose WiFit, a bodyweight
exercises monitoring system that supports accurate repetition
counting using a pair of commodity Wi-Fi devices without
attaching anything to the human body. We first analyze the
movement patterns of bodyweight exercises and couple them with
detailed Doppler effect modeling to determine the most effective
system settings. Then, by leveraging the human activity Doppler
displacement stream extracted from Wi-Fi CSI signal, we have
developed an impulse-based method to segment and count the
number of repetitions, and analyzed specific features for classify-
ing different types of bodyweight exercises. Extensive experiments
show that WiFit achieves 99% accuracy for repetition counting
and 95.8% accuracy for exercise type classification.

Index Terms—Wi-Fi, Ubiquitous, Bodyweight exercise, CSI

I. INTRODUCTION

Bodyweight exercises, such as push-up, sit-up, and squat,
are effective and efficient forms of strength training to maintain
good health and fitness [1]. They have become increasingly
incorporated into people’s daily routines. In order to provide
exercisers with useful feedbacks and improve their exercise
experience, a robust and easily-deployable solution which can
accurately monitor and evaluate such bodyweight workout
sessions is highly desirable.

In the past few years, researchers have proposed a num-
ber of solutions that use cameras [2], wearable and mobile
devices [3], [4], or RFIDs [5] to monitor people’s exercises.
However, camera-based systems have privacy concerns and
light requirements. Wearable and mobile device based systems
require attaching devices to the user’s body, which would be
inconvenient and uncomfortable during bodyweight exercises.
RFIDs attached to free-weight equipment may be appropriate
for free-weight exercises, but not for bodyweight exercises.
Given the limitations of these solutions, it is longing for a
bodyweight exercise monitoring system that is easy to deploy
and without any attaching requirements.

This work is sponsored by National Key Research and Development Plan
under Grant No.2016YFB1001200.
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With the ubiquitous availability of Wi-Fi devices, a number
of Wi-Fi based activity recognition systems exist in the litera-
ture [6]—[8]. They focus mainly on detecting human activities
such as falls, daily activities, or direction of movement. How-
ever, unlike existing works, bodyweight exercise monitoring
requires knowing not only the occurrence of exercises, but
also fine-grained information such as number of repetitions of
each type of exercises. Since a single workout session typically
consists of multiple sets of bodyweight exercise repetitions,
along with other non-exercise activities, it is critical for a
bodyweight exercise monitoring system to detect/segment not
only each set of exercise but also each repetition in that
set. To achieve this goal, we could utilize the basic physical
phenomenon called Doppler effect. Given a pair of Wi-Fi
transmitter and receiver, the human body can reflect Wi-Fi
signals to the receiver, and movement of the human body
introduces a Doppler frequency shift on the reflected Wi-Fi
signal. By capturing this Doppler frequency shift in Wi-Fi
signals [9], we could extract features that are characteristic
of bodyweight exercises. By identifying and utilizing such
features, we could then detect segments of repeated exercises
and count the number of exercise repecitions accurately.

A number of challenges need to be addressed to build
the bodyweight exercise monitoring system with commodity
Wi-Fi devices. First, bodyweight exercises are freestanding
exercises, and how people position themselves relative to the
Wi-Fi devices can have a significant impact on the received
Wi-Fi signal patterns. To obtain high-quality and robust Wi-
Fi based Doppler effect features, it is important for us to
investigate the optimal system design setting and provide clear
guidance to users. Second, each exercise session is a mixture
of multiple types of exercises and non-exercise activities.
This calls for a fully automated approach that can accurately
detect, segment, and characterize individual exercises in a
workout session. In this work, we propose WiFit, a Wi-Fi
based bodyweight exercise monitoring system that is robust
and easily deployable. WiFit addresses all the above mentioned
challenges and makes the following contributions:

« We take three typical exercise (sit-up, push-up, squat) as
examples and investigate the most effective system setting
to capture fine-grained bodyweight exercise movements
using Wi-Fi based Doppler effect features. Specifically,
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we analyze the movement patterns of bodyweight ex-
ercises, and couple them with detailed Doppler effect
modeling to determine how we can capture the exercises’
features with commodity Wi-Fi devices accurately.

We propose an impulse-based method based on Doppler
displacement to automatically segment each exercise set
in the activity stream as well as each repetition in the
exercise set. Furthermore, we also build a SVM classifier
for bodyweight exercise classification.

We implement WiFit on commodity Intel 5300 Wi-Fi
cards, and evaluate the system through extensive experi-
ments with 20 different participants and a total of 4350
repetitions for three kinds of bodyweight exercises. WiFit
performs well for the diverse population and exercises,
achieving an accuracy of 99% in repetition counting and
95.8% in exercise classification .

II. RELATED WORK

Our work is broadly related to research in three sub-areas:
physical exercise monitoring systems, activity recognition with
wireless signals, and activity recognition with Wi-Fi.

a) Physical exercise monitoring systems: The first
group of related studies focus on monitoring physical ex-
ercises with wearable sensors, and mobile phones. There
are wristband [10], and a number of other solutions [3]-
[5], [11]. While all these systems rely on dedicated sensors
or specific hardware for exercise monitoring, we argue that
it is preferable not to require people to wear any devices
during bodyweight exercises, and WiFit is designed with this
objective. There are also camera-based systems for monitoring
human exercises [2]. Due to privacy concerns and lighting
condition requirements of the camera-based schemes, WiFit is
more advantageous, also in terms of cost and deployment as
a device-free Wi-Fi based solution.

b) Activity recognition using wireless signals other
than Wi-Fi: The second group of related works aim at
recognizing human activities [12]-[14] using various wireless
signals other than commodity Wi-Fi. These systems deploy
specialized hardware to track human motion and recognize
human activities. For instance, WiTrack [12] tracks moving
targets at sub-meter accuracy by isolating signals reflected off
targets using FMCW radar. mTrack [13] accurately locates and
tracks finger movement using customized 60GHz millimeter
signals. Wideo [14] achieves fine-grained motion tracking
using the WARP software-defined radio platform. While these
systems leverage dedicated and expensive devices to achieve
high accuracy, WiFit advances the state-of-the-art by extracting
Doppler shifts on commodity Wi-Fi devices and obtaining
fine-grained information about bodyweight exercise training.

¢) Activity recognition using Wi-Fi signals: In recent
years, with the availability of CSI on commodity Wi-Fi
devices, significant progress has been made in device-free
human tracking [8], [9], human activity recognition [7], [15],

ITo see a demonstration video of the WiFit system in action, please visit
YouTube: https://www.youtube.com/watch?v=WIU-5TGFQpo Youku: http://
v.youku.com/v_show/id_XMzQ5NzExMTMzMg==.html
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and vital sign monitoring [16]-[18]. Among the Wi-Fi CSI-
based research works, both model-based [6], [9], [16]-[19]
and pattern-based approaches [7], [15], [20] have been inves-
tigated. E-eyes [7] exploits subcarriers of CSI to recognize
household activities such as washing dishes and taking a
shower. RT-Fall [15] automatically segments fall-like activities
from daily activity CSI stream and accurately detects the fall
using a set of selected features. SEARE [20] utilizes CSI
amplitude waveform shape to recognize exercise activities.
In contrast, Zhang et al. [16]-[19] develop the Fresnel zone
model based techniques to sense micro and macro human
activities robustly. CARM [6] extracts speed-related features
from CSI and proposes an effective machine learning frame-
work to mitigate location-dependency in CSI-based activity
recognition. WiDance [8] and IndoTrack [9] directly extract
Doppler frequency shift with multiple antennas available on
commercial Wi-Fi devices, which can obtain accurate human
motion velocity and direction information. Different from [8],
[9], WiFit goes one step further to leverage both Doppler
velocity and displacement to recognize various activities and
count the number of repeated activities accurately.

III. DOPPLER EFFECT FOR FINE-GRAINED BODYWEIGHT
EXERCISE MONITORING

In this section, we present in detail how to obtain effective
and robust Doppler effect features from Wi-Fi signals for fine-
grained bodyweight exercise monitoring.

A. Wi-Fi CSI based Doppler Effect Model

Given a pair of Wi-Fi transmitter (TX) and receiver (RX),
the Wi-Fi signal can propagate from the transmitter to the
receiver via a direct path, or via path reflected by human,
wall and other objects. The signal received at the receiver is
a superposition of all path signals. This phenomenon is called
multi-path propagation. Human movement can change the path
length of the human reflection signal, and introduce a Doppler
frequency shift to the received signal: fpoppier = f-22.
Where f is the carrier frequency of the signal, vpqn is the
speed of path length change, and c is the propagation speed
of light.

As Wi-Fi CSI characterizes both the amplitude attenuation
and phase change when a signal propagates from the trans-
mitter to the receiver, it also contains this Doppler frequency
shift information. Considering only one signal, its CSI at time
to is x(f,tg) = Age 72770 where Ay is the attenuation and
To is the propagation delay. If the propagation path length
changes at a speed of v, after a short time period ¢, the path
length change Al,q:, = vt and the propagation delay change
AT = % When ignoring the attenuation change, the signal’s
CSlis z(f, to+t) = Age 327 (0+5) = 2(f t0)e 927/ So
the changing frequency of CSI reflects the Doppler frequency
shift of the signal. For the multi-path propagation scenario,
the CSI of each packet can be represented as follows:

L
. vt
o(fito+1) =Y Ae 2RI, (M
i=1
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Fig. 1: Doppler velocity vs. actual human movement velocity.

where L is the number of propagation paths, 7; is the propa-
gation delay of the i*" path signal at time ¢4, and v; is the i*"
path’s length change speed. Based on (1), we can estimate the
Doppler frequency shift introduced by the human movement
with the frequency analysis on Wi-Fi CSI, and further estimate
the path length change speed, also referred as Doppler velocity.

B. Doppler Velocity vs. Human Movement

In order to use Doppler velocity for bodyweight exercise
monitoring, we first need to understand the relationship be-
tween Doppler velocity and human movement. As illustrated
in Figure 1, there exists an ellipse for the human target with
foci at the transmitter and the receiver. Here, the human
velocity can be decomposed into two components: the tangent
human velocity and the normal human velocity. Only the
normal human velocity would change the human reflection
path length and introduce a non-zero Doppler velocity. This
leads to two important observations:

o For the same human position and same magnitude of
human velocity, changing the direction of human velocity
can result in different decomposition of the normal human
velocity, and the observed Doppler velocity would be
different.

For different human positions, the same human velocity
would decompose into different normal human velocity,
and the observed Doppler velocity would be different.

In other words, the observed Doppler velocity depends on
not only the actual human movement, but also the relative
position of the human movement and the transceivers. As such,
how we position the system is crucial to ensure the extraction
of effective and robust Doppler effect features.

C. System Deployment for Bodyweight Exercise Monitoring

Understanding Human Velocity of Bodyweight Exercis-
es: As illustrated in Figure 2, most bodyweight exercises can
be abstracted as a circular motion where a part of the human
body is fixed as the pivot point for kinetic stability and other
parts of the human body perform a circular motion around
this pivot point. Here, we consider three typical examples:
sit-up, push-up, and squat. As shown in Figure 3a, during
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(a) Sit-up abstraction

(b) Push-up abstraction (c) Squat abstraction

Fig. 2: Human velocity direction of bodyweight exercises.
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(a) Sequence of sit-up exercise (b) Human velocity magnitude

Fig. 3: Human velocity magnitude of bodyweight exercises.

the process of sit-up, when the body moves from position
A to position B, the magnitude of human velocity gradually
increases, and when the body continues to move from B
to C, the magnitude of human velocity gradually decreases
to zero. Although not exactly symmetric, a similar change
happens when the body returns from C to A. Thus, if we
could obtain obvious Doppler velocity pattern corresponding
to human velocity pattern shown in Figure 3b, we will get
chance to characterize bodyweight exercise using Wi-Fi signal.

System Deployment vs. Human Velocity Direction: Given
a pair of Wi-Fi transceivers placed apart on the ground, we
investigate three deployment strategies with regard to human
velocity direction as Figure 4a-4c, in which the human body
is parallel or oblique or perpendicular with the direct path.
Correspondingly, Figure 4d-4f show the Doppler velocity
spectrum obtained from real-world sit-up exercise under d-
ifferent deployment settings. We can see that, although the
user performs the same sit-up exercise, the quality of Doppler
velocity varies significantly, with the perpendicular setting
achieving the best quality (clear periodic pattern).

The detailed reasoning is explained as follows: when the
human body is parallel to the direct path as shown in Figure 5a.
There is an angle 6 between the human velocity and reflection
plane (the blue shaded triangle). The human velocity v,..,; can
be decomposed into the normal velocity v on the reflection
plane and another tangent velocity (not shown). Only normal
velocity change the reflection path length which can be ex-
pressed as v = Upeqr X c0s(0). 0 of parallel deployment is close
to 90 degrees. It would result in near zero Doppler velocity
which is difficult to be extracted and easily distorted by noise.
In contrast, § of perpendicular deployment is close to 0 degree
and the normal velocity is largest as shown in Figure 5b. So
significant changes of the Doppler velocity could be observed.
As for oblique deployment, it has an angle € that is in-between
the parallel and perpendicular settings, and correspondingly, its
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Fig. 4: Doppler velocity of different deployment strategies.
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Fig. 5: Velocity decomposition of different deployments.

Doppler velocity changes fall in middle cases.

When come to push-up and squat, the reasoning process is
similar to sit-up. Through extensive experiments, all of three
kinds of exercises achieve better Dopper velocity pattern in the
perpendicular deployment. The perpendicular deployments of
three kinds of exercises are illustrated in Figure 6a-6c.

System Deployment vs. Human Position: Besides human
velocity direction, the impact of human position should also
be considered when deciding on the best system deployment.
Here, we further investigate different deployment strategies
with regard to human position along the mid-perpendicular
line of the direct path. Specifically, for sit-up exercise, as
shown in Figure 7a-7c, we consider three typical human posi-
tions, where the waist or chest or head is above the direct path.
Figure 7d-7f show the corresponding Doppler velocity spec-
trum in real-world experiments. When the human is further
away from the direct path, the magnitude of Doppler velocity
becomes larger (easier to detect). But at the same time, the
signal becomes weaker and the Doppler velocity spectrum
becomes darker (harder to detect). It’s because that: as the
human moves further away from the direct path, the main
human reflection area gradually changes from torso to head,
which generates a weaker reflection signal due to the smaller
reflection area. Therefore, the best system deployment needs
to strike a balance between larger Doppler velocity changes
and weaker/noisier reflection signal. We further conduct exper-
iments with 10cm fine-grained increments in between waist,
chest, and head. As a result, the chest deployment achieves the
best performance for sit-up, capturing clear Doppler velocity
patterns with larger magnitude and higher intensity. Similarly,
we also have conducted lots of experiments for push-up and
squat. It turns out that the best position for squat is when the
user stands next to the direct path as shown in Figure 6b, and
the best position for push-up is when the user’s chest aligned
with the direct path as shown in Figure 6c¢.

D. Doppler Displacement Extraction on Commodity Wi-Fi

So far, we have assumed that Doppler velocity is readily
available from Wi-Fi CSI. In reality, we apply the Doppler-
MUSIC method [9] to get the Doppler velocity spectrum
which is used for analysis in previous section, as the example
shown in Figure 8a. Then we further extract the strongest
Doppler velocity from Doppler velocity spectrum as our valid
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(a) Sit-up deployment (b) Push-up deployment (c) Squat deployment

Fig. 6: System deployment.
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Fig. 7: Doppler velocity of different human positions.

Doppler velocity, because it represents the velocity of dom-
inating reflection path signal introduced by major reflection
area of human body. Figure 8b shows the extracted Doppler
velocity from the corresponding spectrum in Figure 8a. After
that, we could calculate the Doppler displacement from the
Doppler velocity:

{d(zo) =0

d(z;) = d(zi—1) + v(z) X Az,i>0

where 2 is the system start time, d(z;) is the aggregated path
length change since zg, v(2;) is the extracted Doppler velocity
at the ¢*" time interval, and Az is the time interval between
two consecutive Doppler velocity estimations. Figure 8c shows
the Doppler displacement calculated from the Doppler velocity
shown in Figure 8b. The Doppler displacement is smoother
than Doppler velocity, and will be used in the next section for
segmenting and counting bodyweight exercises.

2

IV. BODYWEIGHT EXERCISE SEGMENTATION, COUNTING,
AND CLASSIFICATION

Now, we are able to extract effective and robust Doppler
effect features to capture fine-grained bodyweight exercise
movements. However, more is needed for real-world mon-
itoring of bodyweight exercises, where people tend to per-
form multiple sets of exercises of different types, along with
non-exercise activities in a single workout session. Thus, it
is important for WiFit to automatically segment and count
the bodyweight exercise, then further classify each type of
bodyweight exercises.

A. Bodyweight Exercise Segmentation and Counting

Key Observations: Due to the diversity of people’s exercise
routines, it is natural to expect that the system would collect
signal of intermittent exercise and non-exercise activities in the
exercise process. To illustrate this, let’s take a closer look at
the sample workout session shown in Figure 9. After starting
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Fig. 8: Doppler displacement extraction
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Fig. 9: A sample workout session consisting of multiple sets of bodyweight exercises and other activities. Upper figure shows
the Doppler velocity spectrum, and below figure shows the corresponding Doppler displacement and annotated activities.

the system, the user first walks towards the system and then
lies down to perform a set of sit-up exercise. After some rest,
he gets up, walks around a little bit, then he gets down again
to perform another set of push-up exercise. After that, he gets
up again and adjust himself for squat. Finally, after finishing
a set of squat exercise, he gets up and walks away. From the
annotated Doppler displacement shown in Figure 9, we make
the following three observations:

1) Each exercise repetition will cause an impulse pattern
in Doppler displacement. The value of Doppler displace
would increase (decrease) when the human body moves
away from (towards) the direct path, i.e., positive (neg-
ative) Doppler velocity.

Compared with other non-exercise activities, body-
weight exercises are usually carried out in sets of
repetitions, resulting in a short pause at the beginning
of each set on the Doppler displacement, followed by a
group of continuous and periodic impulses.

Within the same set of exercise repetitions by a user, the
impulses should be similar to each other.

2)

3)

Based on these observations, we propose an impulse-based
method to distinguish bodyweight exercises from other non-
exercise activities, and further segment and count individual
repetitions in each set of exercise.

Single Impulse Detection: Since each exercise repetition
consists of moving away and returning back to the base
posture, a target impulse in the Doppler displacement stream
would have the form as shown in Figure 10, in which the three
transition points A, B,C form an impulse, and the amount
of displacement within an impulse would be symmetric. For
example, when moving up and down in a sit-up repetition,

Impulse

Fig. 10: A real-world example of impulse in sit-up exercise.

the corresponding Doppler displacement for moving up D4p
and down Dpc should be the same. Considering that the
Doppler velocity estimation may have accumulative error, a
target impulse should satisfy: |Dap — Dpc| < ép, where
0p is empirically set to 0.3m in this work. Furthermore,
considering the physical characteristics of the human body,
each exercise repetition is expected to take a certain amount of
time, i.e., not too fast or too slow. Therefore, a target impulse
should satisty: o7 . <Tc—Ta <7, ., where T4 and T
correspond to the time of point A and point C, respectively,
0r,., and ér _  are the minimal and maximal threshold of
repetition duration. In our system, we set o7, , = 1 second
and 07, = 5 seconds. Using the criteria above, WiFit
continuously monitors the Doppler displacement stream and
detects individual impulses by checking the three transition
points, the difference of their displacement, and time duration.

Set of Impulses Detection: The single impulse detection
process above can filter out most of the static and random
activities. But it may still detect impulses caused by other non-
exercise activities, such as sudden shake of the body, walking
back and forth. To determine whether an impulse corresponds
to a bodyweight exercise repetition, we make the following
assumptions: (a) Bodyweight exercises are performed in sets
of repetitive movements, and each set contains more than one
exercise repetition. (b) There is a short pause before the start
of each set, as the user gets ready in the base posture. (c)
The gap between two consecutive repetitions is short (e.g., no
more than 2 seconds in our setting). In other words, in real-
world scenarios, the bodyweight exercises often occur as sets
of impulses, which can be detected as follows:

1) If a new impulse occurs after a short pause and does not
belong to the previous impulse set, it may be the first
impulse of a new set.

2) A new impulse is added to the previous impulse set if
it satisfies the following two requirements:

(@) (i-1)

o Tyogin = Tona ' < Ointerval, Where Tb(;;m is the
beginning time of a new impulse, 7T 6(221) is the

ending time of the last impulse in the previous
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impulse set, J;ptervqr 1S the maximum time gap
allowed between two adjacent impulses in a set.

¢ The normalized similarity between the new impulse
and impulses in the previous set should be high:

Z;l=l DTW(Impulsennuu ]mpulsej)
> i1 Len(Impulse;)

where n is the total number of impulses in the
previous impulse set, each impulse is represented
as a sequence of Doppler displacement values, and
Len(Impulse;) is the length of the j* impulse.
DTW refers to the Dynamic Time Warping algo-
rithm [21].

3) When no more new impulse can be added to the previous
impulse set, and the number of impulses in the previous
impulse set n is more than one, this set of impulses will
be segmented out with n as the number of repetitions
in this set. Otherwise, it will be discarded.

B. Bodyweight Exercise Classification

Given the segmented sets of impulses, which correspond to
different sets of bodyweight exercise repetitions, we further
classify them into the specific types of bodyweight exercises.
In this work, we propose to extract the following features
from real-time CSI streams for exercise classification: (1)
normalized standard deviation of CSI amplitude, (2) nor-
malized standard deviation of CSI phase difference between
two antennas on the receiver, (3) entropy of CSI histogram,
(4) change direction of Doppler Displacement, (5) Doppler
velocity intensity, and (6) normalized valid Doppler velocity
range. The first three features have been used and explained in
previous works for activity classification [7], [15], [22]. Here
we only elaborate on the other three new features.

e First, consider a standard sit-up exercise, it begins with
the user lying on the floor, then elevating both the upper and
lower vertebrae from the floor, before returning back to the
floor again [1]. In this process, the human body first moves
away from the direct path and then closer to the direct path.
As such, sit-up impulses are positive, as shown in Figure 9.
However, for push-up and squat exercises, the human body
first moves closer to the direct path, then away from the direct
path, resulting in negative impulses. So the first feature we
choose here is the positive or negative direction of the impulse,
which is effective to differentiate sit-up exercise from other
two types of exercises.

e Next, compared with squat, the human body is at a lower
height when doing push-up. With the Wi-Fi devices placed
naturally on the ground, chest as the main reflection area in
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Fig. 11: Feature comparison of push-up and squat.

push-up has shorter reflection path than hip in squat. Note
that the strongest Doppler velocity of the Doppler velocity
spectrum represents the velocity of the dominating reflection
path signal, and its value (referred to as Doppler velocity
intensity) indicates the power of reflection path. So we choose
Doppler velocity intensity as another effective feature. As
shown in Figure 1la, the distributions of Doppler velocity
intensity are quite different between push-up and squat, and
push-up shows higher Doppler velocity intensity than squat.
o Further, consider push-up exercise, in which both the
human torso and arms move but at different velocities, thus
generating a much wider range of Doppler velocity on the
Doppler spectrum. For squat exercise, the Doppler velocity is
mainly generated by the human hip with a narrow range of
Doppler velocity. This motivates the design of our third fea-
ture: the normalized valid Doppler velocity range (normalized
by the strongest Doppler velocity extracted from the Doppler
spectrum), which indicates the diversity of human velocity.
Figure 11b shows the normalized valid Doppler velocity range
distributions for push-up and squat exercises. It makes further
improvement to differentiate push-up and squat. At last, all of
the features along with the annotated labels are fed into the
multi-class LibSVM classifier for exercise classification.

V. EVALUATION

A. System Implementation and Experimental Setup

For WiFit system. we use two GIGABYTE miniPCs e-
quipped with off-the-shelf Intel 5300 Wi-Fi cards as the
transmitter and receiver [23]. The experiments are conducted
in the 5 GHz frequency band utilizing a 20 MHz channel,
and the sampling rate of CSI in WiFit is set to 200 Hz. We
conduct experiments in two different environments as shown in
Figure 12: a) an office room (4mx4m) with various furniture
and electrical appliances, and b) a meeting room (6mx5m)
with a big table and many chairs. Both rooms are typical
indoor environments with rich multi-path.

The experiments were conducted over a period of three
weeks. We have recruited 20 volunteers to perform the three
types of bodyweight exercises naturally in various workout
sessions. The 20 volunteers include 5 female and 15 male,
aged 20-38, with a height range of [157¢m, 185¢m] and a
weight range of [50kg, 100kg]. Most of them have no prior
knowledge of our system. In each workout session, a volunteer
easily sets up two Wi-Fi devices by placing them on both sides
of his/her body with a suggested direct path length of 1 m. The
Wi-Fi devices can be replaced by personal devices in the real
world (e.g., smart phone as transmitter and tablet as receiver).
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Projector
4
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Table| | Bookcase

(a) Office Room (b) Meeting Room

Fig. 12: System evaluation environments.
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Fig. 13: (a), (b) show the repetition counting performance of office room(R1) and meeting room(R2); (c) shows the repetition
counting performance of different direct path length; (d), (e) show the missed and false examples of report.

After that, he/she starts our system, and makes preparations,
then performs several sets of bodyweight exercise of different
types. Only a short pause is required before each set of
exercise at the base posture. At other time, the volunteer
can do any thing naturally for preparing the exercise. After
finishing the exercise session, the volunteer leaves and stops
our system. A camera is deployed in the environment to
record the ground truth. Each volunteer performed each type
of bodyweight exercises at least 10 sets with 5 repetitions in
one set, resulting in 1450 repetitions(290 sets) per type, and
in total 4350 repetitions of bodyweight exercises. In order to
evaluate the exercise repetition counting performance, we use
the metrics below:

# of correctly detected repetitions
# of repetitions that are per formed

3

accuracy =

# of mistakenly detected repetitions

FPR =
# of repetitions that are detected

(C))

B. Repetition Counting Performance

Impact of Different Environments: To evaluate the
robustness of our segmentation scheme, we evaluate the rep-
etition counting performance in two different indoor environ-
ments, where both direct paths are set to 1m. Figure 13a-
13b shows the results for each type of bodyweight exercise
in two indoor environments. We can see that WiFit achieves
good performance for all three types of exercises, with more
than 98% accuracy and less than 1% FPR in both indoor
environments. During the experiments, missed reports and
false reports for counting only occur rarely at the end of a
set of exercise. As shown in Figure 13d, when the volunteer
was too exhausted to finish the last several repetitions in a
set, the Doppler displacement deformed badly, which would
lead to a missed report in our system. As to false alarms,
they may occur when a volunteer finishes his exercise with
other irrelevant body shaking actions. As shown in Figure 13e,
after the volunteer completed his exercise of sit-ups, his body
shook suddenly as he was standing up because of imbalance,
causing an impulse that was similar to the previous sit-
up repetitions, thus generating a false count for this set of
exercise. Nevertheless, such missed report and false report
occur rarely under our segmentation scheme.

Impact of Direct Path Length: Since exercisers may differ
in their body shape and exercise style, they may adjust their
Wi-Fi devices’ placement and position them slightly different
from the suggested 1m direct path length. Therefore, we also
conducted experiments in the office room with two other direct
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path lengths: 0.8m and 1.2m so that further examine the
counting performance and testify the robustness of our system.
Five volunteers are asked to perform the same workout with
each type of exercise 50 repetitions in different direct path
length settings. The results of the different length settings are
shown in Figure 13c. From the results, we can see that the
counting accuracy stays high across different lengths of the
direct path. This means that each user can choose the direct
path length that is most comfortable for himself or herself and
still get consistent counting performance.

C. Exercise Classification Performance

Next, we evaluate the exercise classification performance.
As false repetition reports only occur rarely at the end of a
set of exercise, and our classification scheme is based on the
exercise set but not on the repetition, so we only consider the
three target types of exercise for classification. Specifically,
for each of three types of bodyweight exercises, we examine
for all segmented sets of exercises that the fraction of sets that
are correctly classified V'S sets that are misclassified.

Impact of Different Environments: In order to evaluate
the performance of different environments, 200 sets of each
exercise type conducted by 20 volunteers are firstly gathered
in the office room. Then the whole data are divided into two
parts (18 volunteers as training set, 2 volunteers as testing set)
for 10-fold cross validation to build the classification model.
For the meeting room, we apply the same model trained in
the office room to test the exercise data collected from 4
volunteers with 40 sets per exercise type. Figure 14a-14b
shows the confusion matrix for the three exercise types in
the two indoor environments. We first note that all the sit-
up exercise cases are correctly classified. This is due to the
impulse direction feature we used for effective classification.
Our system also does a good job distinguishing the other two
types of exercises, correctly classifying 95.8% and 94.6% of
the push-up and squat exercises in the office room (R1). The
classification performance in the meeting room (R2) drops a
little but still holds a high accuracy while using the same
model trained in the office room. The results clearly show that,
based on the effective feature selection scheme, our system
achieves high and stable activity classification performance
for all three kinds of exercise in different environments.

Impact of Direct Path Length: We also evaluate the
robustness of our classification model by varying the direct
path length. The test data set is collected from five volunteers
in another two length settings (0.8m, 1.2m), same as the
one used for counting performance evaluation under different
length settings. The results are shown in Figure 14c-14d. We
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Actual Predicted exercise Actual Predicted exercise
exercise | Pysh-up | Sit-up | Squat exercise | push-up | Sit-up | Squat
Push-up | 0.958 0 0.042 Push-up |0.902 0 0.098
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Predicted exercise
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exercise | Pysh-up | Sit-up | Squat exercise | Pysh-up | Sit-up | Squat
Push-up | 0.947 0 0.053 Push-up | 0.953 0 0.047
Sit-up 0 1 0 Sit-up 0 1 0
Squat 0.054 0 0.946 Squat 0.062 0 0.938

(c) Direct path = 0.8m in R1 (d) Direct path = 1.2m in R1

Fig. 14: Exercise classification performance.

can see that the classification performance is only slightly
affected by the direct path length. Again, this evaluation
demonstrates that our system is robust against variations in
the direct path length.

Impact of Different Participants: Since exercisers can
differ in height, weight, and the way they exercise, we also
evaluated the robustness of our system against individual
diversity. First, we collected training data from 10 different
volunteers to build the classification model. Then, in the
testing phase, we apply this model to other 10 volunteers,
and the evaluation results of individual participants are shown
in Figure 15. Overall, our system maintains high classification
accuracy (between 0.939 and 0.967) for all 10 participants.

1
I Accuracy

0.95
.9
N I | I I I
.8
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Fig. 15: Classification performance of different participants
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VI. CONCLUSION

In this paper, we have developed WiFit, a ubiquitous body-
weight exercise monitoring system using only two commodity
Wi-Fi devices. WiFit can automatically segment, count and
recognize three typical bodyweight exercises. To build WiFit,
we have studied the relationship between bodyweight exercises
and Wi-Fi signal, and propose the best system deployment
strategies in order to capture effective and robust Doppler
effect features that correspond well to fine-grained bodyweight
exercise movements. Moreover, we have proposed an impulse-
based method to segment and count each exercise repetition.
Based on the segmentation, we also extracted informative
features to classify different types of bodyweight exercises.
WiFit achieves an accuracy of 99% in repetition counting,
and 95.8% in exercise classification. Building upon our initial
success of effective bodyweight exercise monitoring using off-
the-shelf Wi-Fi devices, we plan to investigate other interesting
problems. For example, can we develop other features that
could generalize in classification of more exercise types? Can
we extend exercise monitoring in muti-user scenario? These
would be our future work.
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