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Abstract—Bodyweight exercises are effective and efficient ways
to improve one’s balance, flexibility, and strength without ma-
chinery or extra equipment. Prior works have been successful in
monitoring aerobic exercises and free-weight exercises, but are
not suitable for ubiquitous bodyweight exercise monitoring in
order to provide fine-grained repetition counting information in
each exercise set. In this work, we propose WiFit, a bodyweight
exercises monitoring system that supports accurate repetition
counting using a pair of commodity Wi-Fi devices without
attaching anything to the human body. We first analyze the
movement patterns of bodyweight exercises and couple them with
detailed Doppler effect modeling to determine the most effective
system settings. Then, by leveraging the human activity Doppler
displacement stream extracted from Wi-Fi CSI signal, we have
developed an impulse-based method to segment and count the
number of repetitions, and analyzed specific features for classify-
ing different types of bodyweight exercises. Extensive experiments
show that WiFit achieves 99% accuracy for repetition counting
and 95.8% accuracy for exercise type classification.

Index Terms—Wi-Fi, Ubiquitous, Bodyweight exercise, CSI

I. INTRODUCTION

Bodyweight exercises, such as push-up, sit-up, and squat,

are effective and efficient forms of strength training to maintain

good health and fitness [1]. They have become increasingly

incorporated into people’s daily routines. In order to provide

exercisers with useful feedbacks and improve their exercise

experience, a robust and easily-deployable solution which can

accurately monitor and evaluate such bodyweight workout

sessions is highly desirable.

In the past few years, researchers have proposed a num-

ber of solutions that use cameras [2], wearable and mobile

devices [3], [4], or RFIDs [5] to monitor people’s exercises.

However, camera-based systems have privacy concerns and

light requirements. Wearable and mobile device based systems

require attaching devices to the user’s body, which would be

inconvenient and uncomfortable during bodyweight exercises.

RFIDs attached to free-weight equipment may be appropriate

for free-weight exercises, but not for bodyweight exercises.

Given the limitations of these solutions, it is longing for a

bodyweight exercise monitoring system that is easy to deploy

and without any attaching requirements.

This work is sponsored by National Key Research and Development Plan
under Grant No.2016YFB1001200.

With the ubiquitous availability of Wi-Fi devices, a number

of Wi-Fi based activity recognition systems exist in the litera-

ture [6]–[8]. They focus mainly on detecting human activities

such as falls, daily activities, or direction of movement. How-

ever, unlike existing works, bodyweight exercise monitoring

requires knowing not only the occurrence of exercises, but

also fine-grained information such as number of repetitions of

each type of exercises. Since a single workout session typically

consists of multiple sets of bodyweight exercise repetitions,

along with other non-exercise activities, it is critical for a

bodyweight exercise monitoring system to detect/segment not

only each set of exercise but also each repetition in that

set. To achieve this goal, we could utilize the basic physical

phenomenon called Doppler effect. Given a pair of Wi-Fi

transmitter and receiver, the human body can reflect Wi-Fi

signals to the receiver, and movement of the human body

introduces a Doppler frequency shift on the reflected Wi-Fi

signal. By capturing this Doppler frequency shift in Wi-Fi

signals [9], we could extract features that are characteristic

of bodyweight exercises. By identifying and utilizing such

features, we could then detect segments of repeated exercises

and count the number of exercise repecitions accurately.

A number of challenges need to be addressed to build

the bodyweight exercise monitoring system with commodity

Wi-Fi devices. First, bodyweight exercises are freestanding

exercises, and how people position themselves relative to the

Wi-Fi devices can have a significant impact on the received

Wi-Fi signal patterns. To obtain high-quality and robust Wi-

Fi based Doppler effect features, it is important for us to

investigate the optimal system design setting and provide clear

guidance to users. Second, each exercise session is a mixture

of multiple types of exercises and non-exercise activities.

This calls for a fully automated approach that can accurately

detect, segment, and characterize individual exercises in a

workout session. In this work, we propose WiFit, a Wi-Fi

based bodyweight exercise monitoring system that is robust

and easily deployable. WiFit addresses all the above mentioned

challenges and makes the following contributions:
• We take three typical exercise (sit-up, push-up, squat) as

examples and investigate the most effective system setting

to capture fine-grained bodyweight exercise movements

using Wi-Fi based Doppler effect features. Specifically,
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we analyze the movement patterns of bodyweight ex-

ercises, and couple them with detailed Doppler effect

modeling to determine how we can capture the exercises’

features with commodity Wi-Fi devices accurately.

• We propose an impulse-based method based on Doppler

displacement to automatically segment each exercise set

in the activity stream as well as each repetition in the

exercise set. Furthermore, we also build a SVM classifier

for bodyweight exercise classification.

• We implement WiFit on commodity Intel 5300 Wi-Fi

cards, and evaluate the system through extensive experi-

ments with 20 different participants and a total of 4350

repetitions for three kinds of bodyweight exercises. WiFit

performs well for the diverse population and exercises,

achieving an accuracy of 99% in repetition counting and

95.8% in exercise classification 1.

II. RELATED WORK

Our work is broadly related to research in three sub-areas:

physical exercise monitoring systems, activity recognition with

wireless signals, and activity recognition with Wi-Fi.

a) Physical exercise monitoring systems: The first

group of related studies focus on monitoring physical ex-

ercises with wearable sensors, and mobile phones. There

are wristband [10], and a number of other solutions [3]–

[5], [11]. While all these systems rely on dedicated sensors

or specific hardware for exercise monitoring, we argue that

it is preferable not to require people to wear any devices

during bodyweight exercises, and WiFit is designed with this

objective. There are also camera-based systems for monitoring

human exercises [2]. Due to privacy concerns and lighting

condition requirements of the camera-based schemes, WiFit is

more advantageous, also in terms of cost and deployment as

a device-free Wi-Fi based solution.

b) Activity recognition using wireless signals other
than Wi-Fi: The second group of related works aim at

recognizing human activities [12]–[14] using various wireless

signals other than commodity Wi-Fi. These systems deploy

specialized hardware to track human motion and recognize

human activities. For instance, WiTrack [12] tracks moving

targets at sub-meter accuracy by isolating signals reflected off

targets using FMCW radar. mTrack [13] accurately locates and

tracks finger movement using customized 60GHz millimeter

signals. Wideo [14] achieves fine-grained motion tracking

using the WARP software-defined radio platform. While these

systems leverage dedicated and expensive devices to achieve

high accuracy, WiFit advances the state-of-the-art by extracting

Doppler shifts on commodity Wi-Fi devices and obtaining

fine-grained information about bodyweight exercise training.

c) Activity recognition using Wi-Fi signals: In recent

years, with the availability of CSI on commodity Wi-Fi

devices, significant progress has been made in device-free

human tracking [8], [9], human activity recognition [7], [15],

1To see a demonstration video of the WiFit system in action, please visit
YouTube: https://www.youtube.com/watch?v=WlU-5TGFQpo Youku: http://
v.youku.com/v show/id XMzQ5NzExMTMzMg==.html

and vital sign monitoring [16]–[18]. Among the Wi-Fi CSI-

based research works, both model-based [6], [9], [16]–[19]

and pattern-based approaches [7], [15], [20] have been inves-

tigated. E-eyes [7] exploits subcarriers of CSI to recognize

household activities such as washing dishes and taking a

shower. RT-Fall [15] automatically segments fall-like activities

from daily activity CSI stream and accurately detects the fall

using a set of selected features. SEARE [20] utilizes CSI

amplitude waveform shape to recognize exercise activities.

In contrast, Zhang et al. [16]–[19] develop the Fresnel zone

model based techniques to sense micro and macro human

activities robustly. CARM [6] extracts speed-related features

from CSI and proposes an effective machine learning frame-

work to mitigate location-dependency in CSI-based activity

recognition. WiDance [8] and IndoTrack [9] directly extract

Doppler frequency shift with multiple antennas available on

commercial Wi-Fi devices, which can obtain accurate human

motion velocity and direction information. Different from [8],

[9], WiFit goes one step further to leverage both Doppler

velocity and displacement to recognize various activities and

count the number of repeated activities accurately.

III. DOPPLER EFFECT FOR FINE-GRAINED BODYWEIGHT

EXERCISE MONITORING

In this section, we present in detail how to obtain effective

and robust Doppler effect features from Wi-Fi signals for fine-

grained bodyweight exercise monitoring.

A. Wi-Fi CSI based Doppler Effect Model

Given a pair of Wi-Fi transmitter (TX) and receiver (RX),

the Wi-Fi signal can propagate from the transmitter to the

receiver via a direct path, or via path reflected by human,

wall and other objects. The signal received at the receiver is

a superposition of all path signals. This phenomenon is called

multi-path propagation. Human movement can change the path

length of the human reflection signal, and introduce a Doppler

frequency shift to the received signal: fDoppler = f
vpath

c .

Where f is the carrier frequency of the signal, vpath is the

speed of path length change, and c is the propagation speed

of light.

As Wi-Fi CSI characterizes both the amplitude attenuation

and phase change when a signal propagates from the trans-

mitter to the receiver, it also contains this Doppler frequency

shift information. Considering only one signal, its CSI at time

t0 is x(f, t0) = A0e
−j2πfτ0 , where A0 is the attenuation and

τ0 is the propagation delay. If the propagation path length

changes at a speed of v, after a short time period t, the path

length change Δlpath = vt and the propagation delay change

Δτ = vt
c . When ignoring the attenuation change, the signal’s

CSI is x(f, t0+t) = A0e
−j2πf(τ0+

vt
c ) = x(f, t0)e

−j2πf vt
c . So

the changing frequency of CSI reflects the Doppler frequency

shift of the signal. For the multi-path propagation scenario,

the CSI of each packet can be represented as follows:

x(f, t0 + t) =

L∑
i=1

Aie
−j2πf(τi+

vit

c ), (1)
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Fig. 1: Doppler velocity vs. actual human movement velocity.

where L is the number of propagation paths, τi is the propa-

gation delay of the ith path signal at time t0, and vi is the ith

path’s length change speed. Based on (1), we can estimate the

Doppler frequency shift introduced by the human movement

with the frequency analysis on Wi-Fi CSI, and further estimate

the path length change speed, also referred as Doppler velocity.

B. Doppler Velocity vs. Human Movement

In order to use Doppler velocity for bodyweight exercise

monitoring, we first need to understand the relationship be-

tween Doppler velocity and human movement. As illustrated

in Figure 1, there exists an ellipse for the human target with

foci at the transmitter and the receiver. Here, the human

velocity can be decomposed into two components: the tangent
human velocity and the normal human velocity. Only the

normal human velocity would change the human reflection

path length and introduce a non-zero Doppler velocity. This

leads to two important observations:

• For the same human position and same magnitude of

human velocity, changing the direction of human velocity

can result in different decomposition of the normal human

velocity, and the observed Doppler velocity would be

different.

• For different human positions, the same human velocity

would decompose into different normal human velocity,

and the observed Doppler velocity would be different.

In other words, the observed Doppler velocity depends on

not only the actual human movement, but also the relative

position of the human movement and the transceivers. As such,

how we position the system is crucial to ensure the extraction

of effective and robust Doppler effect features.

C. System Deployment for Bodyweight Exercise Monitoring

Understanding Human Velocity of Bodyweight Exercis-
es: As illustrated in Figure 2, most bodyweight exercises can

be abstracted as a circular motion where a part of the human

body is fixed as the pivot point for kinetic stability and other

parts of the human body perform a circular motion around

this pivot point. Here, we consider three typical examples:

sit-up, push-up, and squat. As shown in Figure 3a, during

(a) Sit-up abstraction (b) Push-up abstraction (c) Squat abstraction

Fig. 2: Human velocity direction of bodyweight exercises.

(a) Sequence of sit-up exercise (b) Human velocity magnitude

Fig. 3: Human velocity magnitude of bodyweight exercises.

the process of sit-up, when the body moves from position

A to position B, the magnitude of human velocity gradually

increases, and when the body continues to move from B
to C, the magnitude of human velocity gradually decreases

to zero. Although not exactly symmetric, a similar change

happens when the body returns from C to A. Thus, if we

could obtain obvious Doppler velocity pattern corresponding

to human velocity pattern shown in Figure 3b, we will get

chance to characterize bodyweight exercise using Wi-Fi signal.

System Deployment vs. Human Velocity Direction: Given

a pair of Wi-Fi transceivers placed apart on the ground, we

investigate three deployment strategies with regard to human

velocity direction as Figure 4a-4c, in which the human body

is parallel or oblique or perpendicular with the direct path.

Correspondingly, Figure 4d-4f show the Doppler velocity

spectrum obtained from real-world sit-up exercise under d-

ifferent deployment settings. We can see that, although the

user performs the same sit-up exercise, the quality of Doppler

velocity varies significantly, with the perpendicular setting

achieving the best quality (clear periodic pattern).

The detailed reasoning is explained as follows: when the

human body is parallel to the direct path as shown in Figure 5a.

There is an angle θ between the human velocity and reflection

plane (the blue shaded triangle). The human velocity vreal can

be decomposed into the normal velocity v on the reflection

plane and another tangent velocity (not shown). Only normal

velocity change the reflection path length which can be ex-

pressed as v = vreal×cos(θ). θ of parallel deployment is close

to 90 degrees. It would result in near zero Doppler velocity

which is difficult to be extracted and easily distorted by noise.

In contrast, θ of perpendicular deployment is close to 0 degree

and the normal velocity is largest as shown in Figure 5b. So

significant changes of the Doppler velocity could be observed.

As for oblique deployment, it has an angle θ that is in-between

the parallel and perpendicular settings, and correspondingly, its

(a) Parallel (b) Oblique (c) Pendicular

(d) Parallel (e) Oblique (f) Perpendicular

Fig. 4: Doppler velocity of different deployment strategies.
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(a) Parallel(left side view) (b) Perpendicular

Fig. 5: Velocity decomposition of different deployments.

Doppler velocity changes fall in middle cases.

When come to push-up and squat, the reasoning process is

similar to sit-up. Through extensive experiments, all of three

kinds of exercises achieve better Dopper velocity pattern in the

perpendicular deployment. The perpendicular deployments of

three kinds of exercises are illustrated in Figure 6a-6c.

System Deployment vs. Human Position: Besides human

velocity direction, the impact of human position should also

be considered when deciding on the best system deployment.

Here, we further investigate different deployment strategies

with regard to human position along the mid-perpendicular

line of the direct path. Specifically, for sit-up exercise, as

shown in Figure 7a-7c, we consider three typical human posi-

tions, where the waist or chest or head is above the direct path.

Figure 7d-7f show the corresponding Doppler velocity spec-

trum in real-world experiments. When the human is further

away from the direct path, the magnitude of Doppler velocity

becomes larger (easier to detect). But at the same time, the

signal becomes weaker and the Doppler velocity spectrum

becomes darker (harder to detect). It’s because that: as the

human moves further away from the direct path, the main

human reflection area gradually changes from torso to head,

which generates a weaker reflection signal due to the smaller

reflection area. Therefore, the best system deployment needs

to strike a balance between larger Doppler velocity changes

and weaker/noisier reflection signal. We further conduct exper-

iments with 10cm fine-grained increments in between waist,

chest, and head. As a result, the chest deployment achieves the

best performance for sit-up, capturing clear Doppler velocity

patterns with larger magnitude and higher intensity. Similarly,

we also have conducted lots of experiments for push-up and

squat. It turns out that the best position for squat is when the

user stands next to the direct path as shown in Figure 6b, and

the best position for push-up is when the user’s chest aligned

with the direct path as shown in Figure 6c.

D. Doppler Displacement Extraction on Commodity Wi-Fi

So far, we have assumed that Doppler velocity is readily

available from Wi-Fi CSI. In reality, we apply the Doppler-

MUSIC method [9] to get the Doppler velocity spectrum

which is used for analysis in previous section, as the example

shown in Figure 8a. Then we further extract the strongest

Doppler velocity from Doppler velocity spectrum as our valid

(a) Sit-up deployment (b) Push-up deployment (c) Squat deployment

Fig. 6: System deployment.

(a) Waist (b) Chest (c) Head

(d) Waist (e) Chest (f) Head

Fig. 7: Doppler velocity of different human positions.

Doppler velocity, because it represents the velocity of dom-

inating reflection path signal introduced by major reflection

area of human body. Figure 8b shows the extracted Doppler

velocity from the corresponding spectrum in Figure 8a. After

that, we could calculate the Doppler displacement from the

Doppler velocity:{
d(z0) = 0

d(zi) = d(zi−1) + v(zi)×Δz, i > 0
(2)

where z0 is the system start time, d(zi) is the aggregated path

length change since z0, v(zi) is the extracted Doppler velocity

at the ith time interval, and Δz is the time interval between

two consecutive Doppler velocity estimations. Figure 8c shows

the Doppler displacement calculated from the Doppler velocity

shown in Figure 8b. The Doppler displacement is smoother

than Doppler velocity, and will be used in the next section for

segmenting and counting bodyweight exercises.

IV. BODYWEIGHT EXERCISE SEGMENTATION, COUNTING,

AND CLASSIFICATION

Now, we are able to extract effective and robust Doppler

effect features to capture fine-grained bodyweight exercise

movements. However, more is needed for real-world mon-

itoring of bodyweight exercises, where people tend to per-

form multiple sets of exercises of different types, along with

non-exercise activities in a single workout session. Thus, it

is important for WiFit to automatically segment and count

the bodyweight exercise, then further classify each type of

bodyweight exercises.

A. Bodyweight Exercise Segmentation and Counting

Key Observations: Due to the diversity of people’s exercise

routines, it is natural to expect that the system would collect

signal of intermittent exercise and non-exercise activities in the

exercise process. To illustrate this, let’s take a closer look at

the sample workout session shown in Figure 9. After starting

(a) Doppler spectrum (b) Doppler velocity (c) Doppler displacement

Fig. 8: Doppler displacement extraction
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Fig. 9: A sample workout session consisting of multiple sets of bodyweight exercises and other activities. Upper figure shows

the Doppler velocity spectrum, and below figure shows the corresponding Doppler displacement and annotated activities.

the system, the user first walks towards the system and then

lies down to perform a set of sit-up exercise. After some rest,

he gets up, walks around a little bit, then he gets down again

to perform another set of push-up exercise. After that, he gets

up again and adjust himself for squat. Finally, after finishing

a set of squat exercise, he gets up and walks away. From the

annotated Doppler displacement shown in Figure 9, we make

the following three observations:

1) Each exercise repetition will cause an impulse pattern

in Doppler displacement. The value of Doppler displace

would increase (decrease) when the human body moves

away from (towards) the direct path, i.e., positive (neg-

ative) Doppler velocity.

2) Compared with other non-exercise activities, body-

weight exercises are usually carried out in sets of

repetitions, resulting in a short pause at the beginning

of each set on the Doppler displacement, followed by a

group of continuous and periodic impulses.

3) Within the same set of exercise repetitions by a user, the

impulses should be similar to each other.

Based on these observations, we propose an impulse-based

method to distinguish bodyweight exercises from other non-

exercise activities, and further segment and count individual

repetitions in each set of exercise.

Single Impulse Detection: Since each exercise repetition

consists of moving away and returning back to the base

posture, a target impulse in the Doppler displacement stream

would have the form as shown in Figure 10, in which the three

transition points A,B,C form an impulse, and the amount

of displacement within an impulse would be symmetric. For

example, when moving up and down in a sit-up repetition,

Fig. 10: A real-world example of impulse in sit-up exercise.

the corresponding Doppler displacement for moving up DAB

and down DBC should be the same. Considering that the

Doppler velocity estimation may have accumulative error, a

target impulse should satisfy: |DAB − DBC | < δD, where

δD is empirically set to 0.3m in this work. Furthermore,

considering the physical characteristics of the human body,

each exercise repetition is expected to take a certain amount of

time, i.e., not too fast or too slow. Therefore, a target impulse

should satisfy: δTmin < TC − TA < δTmax , where TA and TC

correspond to the time of point A and point C, respectively,

δTmin
and δTmax

are the minimal and maximal threshold of

repetition duration. In our system, we set δTmin
= 1 second

and δTmax
= 5 seconds. Using the criteria above, WiFit

continuously monitors the Doppler displacement stream and

detects individual impulses by checking the three transition

points, the difference of their displacement, and time duration.

Set of Impulses Detection: The single impulse detection

process above can filter out most of the static and random

activities. But it may still detect impulses caused by other non-

exercise activities, such as sudden shake of the body, walking

back and forth. To determine whether an impulse corresponds

to a bodyweight exercise repetition, we make the following

assumptions: (a) Bodyweight exercises are performed in sets

of repetitive movements, and each set contains more than one

exercise repetition. (b) There is a short pause before the start

of each set, as the user gets ready in the base posture. (c)

The gap between two consecutive repetitions is short (e.g., no

more than 2 seconds in our setting). In other words, in real-

world scenarios, the bodyweight exercises often occur as sets

of impulses, which can be detected as follows:

1) If a new impulse occurs after a short pause and does not

belong to the previous impulse set, it may be the first

impulse of a new set.

2) A new impulse is added to the previous impulse set if

it satisfies the following two requirements:

• T
(i)
begin − T

(i−1)
end < δinterval, where T

(i)
begin is the

beginning time of a new impulse, T
(i−1)
end is the

ending time of the last impulse in the previous
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impulse set, δinterval is the maximum time gap

allowed between two adjacent impulses in a set.

• The normalized similarity between the new impulse

and impulses in the previous set should be high:∑n
j=1 DTW (Impulsenow, Impulsej)∑n

j=1 Len(Impulsej)
< ξ

where n is the total number of impulses in the

previous impulse set, each impulse is represented

as a sequence of Doppler displacement values, and

Len(Impulsej) is the length of the jth impulse.

DTW refers to the Dynamic Time Warping algo-

rithm [21].

3) When no more new impulse can be added to the previous

impulse set, and the number of impulses in the previous

impulse set n is more than one, this set of impulses will

be segmented out with n as the number of repetitions

in this set. Otherwise, it will be discarded.

B. Bodyweight Exercise Classification

Given the segmented sets of impulses, which correspond to

different sets of bodyweight exercise repetitions, we further

classify them into the specific types of bodyweight exercises.

In this work, we propose to extract the following features

from real-time CSI streams for exercise classification: (1)

normalized standard deviation of CSI amplitude, (2) nor-

malized standard deviation of CSI phase difference between

two antennas on the receiver, (3) entropy of CSI histogram,

(4) change direction of Doppler Displacement, (5) Doppler

velocity intensity, and (6) normalized valid Doppler velocity

range. The first three features have been used and explained in

previous works for activity classification [7], [15], [22]. Here

we only elaborate on the other three new features.

• First, consider a standard sit-up exercise, it begins with

the user lying on the floor, then elevating both the upper and

lower vertebrae from the floor, before returning back to the

floor again [1]. In this process, the human body first moves

away from the direct path and then closer to the direct path.

As such, sit-up impulses are positive, as shown in Figure 9.

However, for push-up and squat exercises, the human body

first moves closer to the direct path, then away from the direct

path, resulting in negative impulses. So the first feature we

choose here is the positive or negative direction of the impulse,

which is effective to differentiate sit-up exercise from other

two types of exercises.

• Next, compared with squat, the human body is at a lower

height when doing push-up. With the Wi-Fi devices placed

naturally on the ground, chest as the main reflection area in

(a) Push-up vs. Squat (b) Push-up vs. Squat

Fig. 11: Feature comparison of push-up and squat.

push-up has shorter reflection path than hip in squat. Note

that the strongest Doppler velocity of the Doppler velocity

spectrum represents the velocity of the dominating reflection

path signal, and its value (referred to as Doppler velocity

intensity) indicates the power of reflection path. So we choose

Doppler velocity intensity as another effective feature. As

shown in Figure 11a, the distributions of Doppler velocity

intensity are quite different between push-up and squat, and

push-up shows higher Doppler velocity intensity than squat.

• Further, consider push-up exercise, in which both the

human torso and arms move but at different velocities, thus

generating a much wider range of Doppler velocity on the

Doppler spectrum. For squat exercise, the Doppler velocity is

mainly generated by the human hip with a narrow range of

Doppler velocity. This motivates the design of our third fea-

ture: the normalized valid Doppler velocity range (normalized

by the strongest Doppler velocity extracted from the Doppler

spectrum), which indicates the diversity of human velocity.

Figure 11b shows the normalized valid Doppler velocity range

distributions for push-up and squat exercises. It makes further

improvement to differentiate push-up and squat. At last, all of

the features along with the annotated labels are fed into the

multi-class LibSVM classifier for exercise classification.

V. EVALUATION

A. System Implementation and Experimental Setup

For WiFit system. we use two GIGABYTE miniPCs e-

quipped with off-the-shelf Intel 5300 Wi-Fi cards as the

transmitter and receiver [23]. The experiments are conducted

in the 5 GHz frequency band utilizing a 20 MHz channel,

and the sampling rate of CSI in WiFit is set to 200 Hz. We

conduct experiments in two different environments as shown in

Figure 12: a) an office room (4m×4m) with various furniture

and electrical appliances, and b) a meeting room (6m×5m)

with a big table and many chairs. Both rooms are typical

indoor environments with rich multi-path.

The experiments were conducted over a period of three

weeks. We have recruited 20 volunteers to perform the three

types of bodyweight exercises naturally in various workout

sessions. The 20 volunteers include 5 female and 15 male,

aged 20–38, with a height range of [157cm, 185cm] and a

weight range of [50kg, 100kg]. Most of them have no prior

knowledge of our system. In each workout session, a volunteer

easily sets up two Wi-Fi devices by placing them on both sides

of his/her body with a suggested direct path length of 1 m. The

Wi-Fi devices can be replaced by personal devices in the real

world (e.g., smart phone as transmitter and tablet as receiver).

(a) Office Room (b) Meeting Room

Fig. 12: System evaluation environments.
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(a) R1 (b) R2 (c) R1 (d) Example of missed report (e) Example of false report

Fig. 13: (a), (b) show the repetition counting performance of office room(R1) and meeting room(R2); (c) shows the repetition

counting performance of different direct path length; (d), (e) show the missed and false examples of report.

After that, he/she starts our system, and makes preparations,

then performs several sets of bodyweight exercise of different

types. Only a short pause is required before each set of

exercise at the base posture. At other time, the volunteer

can do any thing naturally for preparing the exercise. After

finishing the exercise session, the volunteer leaves and stops

our system. A camera is deployed in the environment to

record the ground truth. Each volunteer performed each type

of bodyweight exercises at least 10 sets with 5 repetitions in

one set, resulting in 1450 repetitions(290 sets) per type, and

in total 4350 repetitions of bodyweight exercises. In order to

evaluate the exercise repetition counting performance, we use

the metrics below:

accuracy =
# of correctly detected repetitions

# of repetitions that are performed
(3)

FPR =
# of mistakenly detected repetitions

# of repetitions that are detected
(4)

B. Repetition Counting Performance

Impact of Different Environments: To evaluate the

robustness of our segmentation scheme, we evaluate the rep-

etition counting performance in two different indoor environ-

ments, where both direct paths are set to 1m. Figure 13a-

13b shows the results for each type of bodyweight exercise

in two indoor environments. We can see that WiFit achieves

good performance for all three types of exercises, with more

than 98% accuracy and less than 1% FPR in both indoor

environments. During the experiments, missed reports and

false reports for counting only occur rarely at the end of a

set of exercise. As shown in Figure 13d, when the volunteer

was too exhausted to finish the last several repetitions in a

set, the Doppler displacement deformed badly, which would

lead to a missed report in our system. As to false alarms,

they may occur when a volunteer finishes his exercise with

other irrelevant body shaking actions. As shown in Figure 13e,

after the volunteer completed his exercise of sit-ups, his body

shook suddenly as he was standing up because of imbalance,

causing an impulse that was similar to the previous sit-

up repetitions, thus generating a false count for this set of

exercise. Nevertheless, such missed report and false report

occur rarely under our segmentation scheme.

Impact of Direct Path Length: Since exercisers may differ

in their body shape and exercise style, they may adjust their

Wi-Fi devices’ placement and position them slightly different

from the suggested 1m direct path length. Therefore, we also

conducted experiments in the office room with two other direct

path lengths: 0.8m and 1.2m so that further examine the

counting performance and testify the robustness of our system.

Five volunteers are asked to perform the same workout with

each type of exercise 50 repetitions in different direct path

length settings. The results of the different length settings are

shown in Figure 13c. From the results, we can see that the

counting accuracy stays high across different lengths of the

direct path. This means that each user can choose the direct

path length that is most comfortable for himself or herself and

still get consistent counting performance.

C. Exercise Classification Performance

Next, we evaluate the exercise classification performance.

As false repetition reports only occur rarely at the end of a

set of exercise, and our classification scheme is based on the

exercise set but not on the repetition, so we only consider the

three target types of exercise for classification. Specifically,

for each of three types of bodyweight exercises, we examine

for all segmented sets of exercises that the fraction of sets that

are correctly classified V S sets that are misclassified.

Impact of Different Environments: In order to evaluate

the performance of different environments, 200 sets of each

exercise type conducted by 20 volunteers are firstly gathered

in the office room. Then the whole data are divided into two

parts (18 volunteers as training set, 2 volunteers as testing set)

for 10-fold cross validation to build the classification model.

For the meeting room, we apply the same model trained in

the office room to test the exercise data collected from 4

volunteers with 40 sets per exercise type. Figure 14a-14b

shows the confusion matrix for the three exercise types in

the two indoor environments. We first note that all the sit-

up exercise cases are correctly classified. This is due to the

impulse direction feature we used for effective classification.

Our system also does a good job distinguishing the other two

types of exercises, correctly classifying 95.8% and 94.6% of

the push-up and squat exercises in the office room (R1). The

classification performance in the meeting room (R2) drops a

little but still holds a high accuracy while using the same

model trained in the office room. The results clearly show that,

based on the effective feature selection scheme, our system

achieves high and stable activity classification performance

for all three kinds of exercise in different environments.

Impact of Direct Path Length: We also evaluate the

robustness of our classification model by varying the direct

path length. The test data set is collected from five volunteers

in another two length settings (0.8m, 1.2m), same as the

one used for counting performance evaluation under different

length settings. The results are shown in Figure 14c-14d. We
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(a) Direct path = 1m in R1 (b) Direct path = 1m in R2

(c) Direct path = 0.8m in R1 (d) Direct path = 1.2m in R1

Fig. 14: Exercise classification performance.

can see that the classification performance is only slightly

affected by the direct path length. Again, this evaluation

demonstrates that our system is robust against variations in

the direct path length.

Impact of Different Participants: Since exercisers can

differ in height, weight, and the way they exercise, we also

evaluated the robustness of our system against individual

diversity. First, we collected training data from 10 different

volunteers to build the classification model. Then, in the

testing phase, we apply this model to other 10 volunteers,

and the evaluation results of individual participants are shown

in Figure 15. Overall, our system maintains high classification

accuracy (between 0.939 and 0.967) for all 10 participants.

Fig. 15: Classification performance of different participants

VI. CONCLUSION

In this paper, we have developed WiFit, a ubiquitous body-

weight exercise monitoring system using only two commodity

Wi-Fi devices. WiFit can automatically segment, count and

recognize three typical bodyweight exercises. To build WiFit,

we have studied the relationship between bodyweight exercises

and Wi-Fi signal, and propose the best system deployment

strategies in order to capture effective and robust Doppler

effect features that correspond well to fine-grained bodyweight

exercise movements. Moreover, we have proposed an impulse-

based method to segment and count each exercise repetition.

Based on the segmentation, we also extracted informative

features to classify different types of bodyweight exercises.

WiFit achieves an accuracy of 99% in repetition counting,

and 95.8% in exercise classification. Building upon our initial

success of effective bodyweight exercise monitoring using off-

the-shelf Wi-Fi devices, we plan to investigate other interesting

problems. For example, can we develop other features that

could generalize in classification of more exercise types? Can

we extend exercise monitoring in muti-user scenario? These

would be our future work.
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