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Abstract: For a large population of elderly who live alone, a continuous long-term daily monitoring
system is critical and imminently needed to enhance the quality of their lives. Continuous monitor-
ing of vitality information (i.e., which area the elder is staying in, the motion state and activity in-
tensity of an elder) is essential for elderly care. In this paper, we use existing commodity Wi-Fi de-
vices to design and implement a long-term device-free human daily vitality system, WiMonitor.
Our system can continuously capture the target’s vitality information in a multi-room home envi-
ronment without compromising the privacy of the target. In a continuous 22-day experiment, Wi-
Monitor successfully captures the human vitality information accurately. We believe our system can
provide valuable long-term monitoring data for both researchers and health care personnel.

Keywords: Wi-Fi; device-free; long-term human vitality; elderly care

1. Introduction

Population aging is a global issue affecting most countries. In 2019, there were 703
million persons aged 65 years or over in the global population, and this number is pro-
jected to double to 1.5 billion in 2050 [1]. By 2050, one in six people in the world will be
over age 65, and roughly 90 percent of that population prefers to stay in their home rather
than in a nursing home [2,3]. In Austria, 51.4% of all households of people aged older than
65 years were single-households in 2018. In Europe, more than a third of older people live
alone. In the US, nearly 29% of the 46 million community-dwelling older adults live alone
[4,5].

Elderly people who live alone can develop poor health, they may have an accident
at home and have no way of alerting someone that they need help [6]. Thus, a continuous
long-term daily monitoring system is critical and imminently needed for elderly health
care. Specifically, daily life routine and abnormality detection are key for good elderly
health care. Besides, regular daily physical activity is one of the most important things
people can do to improve their health, and such daily physical activity can decrease the
risk of chronic diseases [7]. According to the energy consumed as people perform certain
activities, daily activities can be divided into different levels [8,9]. Activity levels may re-
main relative stable over weeks or months, an early and accurate awareness of decreasing
activity levels can act as a warning sign to trigger early intervention [10]. High-level se-
mantics such as the area staying rate of the target, the motion state of the target and long-
term physical activity intensity levels are important health-related information. Moreo-
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ver, if we can continuously and non-intrusively capture these health-related daily life in-
formation of elders over the scale of weeks and months, then that would provide a valu-
able long-term monitoring system for health care.

However, capturing human daily life information for a long period of time is chal-
lenging. An obvious solution is deploying cameras in each room to monitor all the areas
and record all activities an elder performs [11,12]. However, camera-based solutions are
limited by line-of-sight and pose severe privacy concerns. Besides camera-based methods,
researchers have also explored wearable-based methods [13,14] for indoor human moni-
toring in the past few years. However, wearable-based solutions are able to sense the mo-
tion of local body parts but cannot obtain the whole body state and provide location in-
formation. Moreover, people tend to forget or are reluctant to wear wearable devices [15].
An ideal long-term human daily life sensing system at home should be non-intrusive,
does not sacrifice the privacy of the target and is at a low cost.

Wi-Fi is particularly promising as Wi-Fi access points and devices are already ubig-
uitous and thus there is no need of deploying any extra infrastructure. The latest research
explores the possibility of employing Wi-Fi channel state information (CSI) for indoor lo-
calization [16-22], gesture/activity recognition [23,24], gait recognition [25] and motion
detection [26-31]. Current Wi-Fi based activity recognition systems usually aim to identify
specific activities and require manually segmenting the activities in advance. Current Wi-
Fi-based localization systems require labor-intensive training, phase calibration, and the
90th percentile error of these methods can be up to 2 m [19], thus these systems can cause
lots of false results when performing area detection. Moreover, we find that, in a lot of
scenarios in smart home environment, for elder daily life monitoring, obtaining continu-
ous health-related information (i.e., elder’s staying area, motion state and activity inten-
sity levels) during a specific time period is essential. Thus, the area where the elderly stays
in, the motion state (still or non-still [28]) and the activity intensity level of the elderly are
three important health-related information for a continuous long-term elderly monitoring
system.

In this paper, we introduce the notion of vitality to represent the statistical measure
of one’s staying area (room-level), motion state and activity intensity levels during a spe-
cific time period (such as 24 h). Through statistical analysis of vitality information, we can
reveal the daily life routine of the elder and find any abnormalities. For example, if the
elder stays too long in the toilet in the still state which is different from his/her usual daily
life routine, then that may indicate an abnormality calling for attention [28].

There has been prior research work on human vitality sensing—WiVit system [28].
However, it cannot estimate activity intensity of the target, it utilized Doppler-Music
method to extract Doppler frequency shift from conjugate multiplication between the CSI
of two antennas, and used the power of Doppler frequency shift to detect human motion.
Since the operation of conjugate multiplication amplifies the amplitude noise, when user
performs small-scale motion actions (such as turning over on the bed), it may be difficult
to discriminate the small-scale motion actions from environmental noises, thus could not
effectively detect such small-scale motion. In this paper, we propose methodologies of
robust long-term area detection, motion detection and activity intensity estimation. We
implement a system —WiMonitor, which can continuously monitor human vitality infor-
mation for a long period of time in a typical smart home environment.

The main contributions of this paper are as follows:

e  We propose a method to achieve robust long-term room-level area detection.

e  We design a metric to estimate the intensity of physical activity and explain the met-
ric’s capability for activity intensity estimation.

e  Weimplement and deploy a real-time Human Vitality Monitor System — WiMonitor,
using commodity WiFi devices for continuous long-term monitoring in a smart home

environment, and ask four volunteers to live in the smart home for 24 h in a contin-
uous 22-day experiment. The long-term experiment demonstrates that WiMonitor is
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able to accurately reveal the daily life routines of different volunteers. The experi-
ment shows that the system can be used to infer the routine habits of people, detect
any abnormality. We believe this non-intrusive sensing system and sensing data gen-
erated make long-term elderly care and health support at home viable.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 introduces the preliminaries of CSI and other related knowledge. Section 4 pre-
sents the methodologies of proposed system in detail. Section 5 presents the experimental
results analysis. Section 6 discusses the existing indoor positioning techniques and com-
pares with ours. Section 7 draws the conclusion of this work.

2. Related Work

In recent years, with the rapid development of sensing technology in the era of the
Internet of Things (IOT), a variety of human sensing technologies have been developed,
including wearable sensors [13,14,32], camera [11,12], radio frequency (e.g., WiFi) [8,16—
30], acoustic-based sensors [33,34], infrared [35,36]and so forth. wearable sensor-based
technologies require users to wear a specialized device for sensing, which is inconvenient
for users. Camera-based technologies can only work well under good lighting conditions
and may bring privacy concerns. Acoustic-based technologies are vulnerable to ambient
noise and the sensing area is limited. Infrared-based technologies need dedicated infra-
structure and are easy to block by obstacles. WiFi-based technologies reuse WiFi devices,
and have the characteristics of low cost, easy to deploy, privacy preservation and non-
intrusive. These characteristics enable WiFi-based technologies draw more attention
among researchers. In this paper, we focus on long-term human vitality monitoring in a
multi-room smart home environment using the commodity Wi-Fi devices. Our monitor-
ing system not only could detect which area the user is staying in, but also could monitor
the user’s motion state and activity intensity. We also discuss existing research most rele-
vant to our work.

2.1. WiFi-Based Device-Free Indoor Localization

The existing device-free indoor localization systems can be categorized as finger-
print-based and geometric mapping-based. Dang et al. [25] uses the post-processed CSI
amplitude and phase as fingerprint data to build the fingerprint database. Xiao et al. [37]
use the distribution of the CSI amplitudes over the all sub-carriers and the multiple an-
tennas as fingerprint of corresponding positions, in order to improve the localization ac-
curacy. Most of fingerprint-based systems are difficult to deploy since these systems need
labor intensive offline training and are sensitive to the changes of the environment. Unlike
fingerprint-based method, geometric mapping-based method does not need to build fin-
gerprint database. MaTrack [17] employ the angle-of-arrival (AoA) information to locate
the user. However, MaTrack needs phase calibration due to random phase offset of two
antennas. Indotrack [18] applies conjugate multiplication between the CSI of two antennas
to remove the random phase offset and achieves better localization performance than
MaTrack. Through these works can get better localization performance, they cannot ob-
tain accurate area information at room-level.

In a typical home environment, room-level localization is sufficient for a lot of real-
life scenarios. Obtaining the accurate area information (i.e., which room the user is staying
in) is much more useful than knowing inaccurate fine-grained location information for
elder daily life monitoring. WiVit [28] applies a Doppler-Music method [18] to extract the
path length change speeds, and utilizes the relationship between path length change
speed and the user’s position to calculate which area the user is located. However, this
method is not robust enough which needs calibration when environment changes. Wi-
border [16] applies conjugate multiplication between the CSI of two antennas to construct
parameters to discriminate the sensing boundaries which formed by walls of different
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areas. Wiborder is the first work through boundary sensing determination to achieve ac-
curate area detection. However, CSI amplitude contains noise due to the noise of Auto-
matic Gain Controller (AGC) and the environmental noise, conjugate multiplication be-
tween the CSI of two antennas could amplify the amplitude noise, thus the sensing bound-
ary parameter is not robust to achieve long-term area detection. In this paper, we propose
a method to remove the noise of AGC on CSI amplitude to get more stable sensing bound-
ary parameter and achieve long-term area detection.

2.2. WiFi-Based Device-Free Human Motion Detection

As human motion detection plays an important role in many smart home applica-
tions such as intrusion detection and activity recognition, a lot of device-free human mo-
tion detection systems have been developed using WiFi CSI. Dong et al. [26] extracted
both the time and frequent domain features from CSI amplitude to detect human motion
in both flat floor and staircase settings. MoSense [27] utilizes the variance of phase differ-
ence for human motion detection. The key idea is that the phase difference remains stable
when there is no motion, and changes when the user is moving. These research works
require offline training and calibration, and the threshold value which is used to distin-
guish the still and motion status of the target varies in different environments. There are
also have some research works which do not require training phase, WiVit [28] utilizes
Doppler-Music method to obtain Doppler frequency spectrum and uses the power of
Doppler frequency spectrum as the feature to detect human motion. However, both the
power of CSI and Doppler-Music method could amplify the amplitude noise, when the
target is far from transceivers, the amplitude noise could mask the small CSI changes
caused by user’s small-scale motion. WiDetect [31] uses the auto correlation function of
the power of CSI for motion detection.

3. Preliminaries

In this section, we first introduce the CSI Primer, and then introduce two novel tech-
nologies which can reduce the noises of raw CSI signals.

3.1. CSI Primer

In the indoor environment, WiFi signals propagate from transmitter to receiver
through multiple paths, i.e., one Line-of-Sight (LOS) path, and multiple paths from sur-
rounding objects such as walls, furniture and the human body. The signal arriving at the
receiver is a superposition of signals from all the paths, this phenomenon is called multi-
path effect [28,38]. The wireless propagation channel can be modeled as Channel Impulse
Response (CIR) in time domain to characterize the individual paths, CIR h(7) can be de-
noted as:

N
h(r)zZaie_"‘g’é(r—ri), 1)

i=1

where ai, 6iand n represent the amplitude, phase and time delay of the ith path, respec-
tively. N is the total number of multi-path, and 6(7) is the Dirac delta function [39]. Chan-
nel frequency response (CFR) is the Fourier transform of CIR, characterizes the small-scale
multipath effect and the combined effect of scattering, reflecting and fading with distance.
Let X(f,t) and Y(f,t) represent the frequency domain representations of transmitted and
received signals, respectively. CFR for a carrier frequency f at time t. H(f,t) can be repre-
sented as:

Y(f.0)=H(f.t)xX(f.,t)+N, )
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where N represents the Gaussian noise [24]. In WiFi 802.11n, CSI is the sampled version
of CFR at subcarrier level. In the area of Wi-Fi sensing, the ideal CSI can roughly be de-
noted as:
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where ai is the complex attenuation, di(t) is the propagation length of the it path, A is the
wavelength and L is the total number of multi-paths.

The multiple paths can be divided into static paths and dynamic paths [24]. The static
paths are composed of the LoS path and the reflected paths from the static objects in the
environment, which do not change with time. While the dynamic paths are the signal
paths induced by the moving targets. Thus, the CSI can be rewritten as:

ﬂ.zﬂdk(t)

H(f,t)=HS(f,z)+Hd(f,t)zSe‘”’+ZK:ake K 4)

where H(f,t) is the static component which is the sum of CFRs for static paths, and S is the
attenuation, @ is the phase shift of the static component. Ha(f,t) is the dynamic component
which is the sum of CFRs for dynamic paths, and ax is the complex attenuation, dx(t) is the
path length of the kth path, respectively.

However, the CSI measurements provided by commercial WiFi devices contain two
major types of noise: the amplitude noise and the phase noise [38]. Due to the power am-
plifier uncertainty of AGC and environmental noise, the CSI amplitude has noise Aacc and
¢. Since the transmitter and receiver are not time-synchronized, there is a time-varying
random phase offset e /%/fsetin each CSI sample [16,18]. Considering these noises, the
CSI can be rewritten as:

H'(f,1)=A,6ce ™ (H(f.t)+¢)

) K i d (1)
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This CSInoise prevents us from achieving satisfactory sensing performance. In order
to remove such noise, several signal processing technologies have been proposed. Among
these technologies, CSI conjugate multiplication and CSI ratio are two novel technologies
which have been widely used in existing research works [16,18,28,40,41].

3.2. CSI Conjugate Multiplication

A commodity WiFi card usually has multiple antennas, the time-varying random
phase offsets are the same across different antennas on a WiFi card as they share the same
RF oscillator [18]. Thus, conjugate multiplication between the CSI of two antennas can
remove the time-varying random phase offsets [18].
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The conjugate multiplication between the CSI of two antennas can be denoted as
Equation (6), where Hen(f,t) is the output of conjugate multiplication, H;(f,t) is the CSI
of the first antenna, H,(f,t) is the conjugation of the CSI of the second antenna.

In Equation (6), the term @ is the product of the static components and can be
treated as a constant within a short time period. The term @ and term ® are two prod-
ucts of static component of one antenna and dynamic component of another antenna. The
term @ isthe product of dynamic components which can be ignored as the value is very
small. From Equation (6), we can see that the random phase offset has been removed from
CSI. However, conjugate multiplication between the CSI of two antennas amplifies the
amplitude noise.

3.3. CSI Ratio

Assuming there is only one reflection path corresponding to the human target’s
movement, the dynamic component is the path reflected from the human target while the
static component is composed of the LoS propagation and other reflection paths from
static objects in the environment. The CSI Ratio is calculated by taking the division oper-
ation of CSI between two antennas, which is defined as follows:

H (f t):M
‘ H, (f.1)

: . —j27[m

AAGCefjg"”"‘” Se’” +ae A

L _dy(1)
A, e S e +q eijz;r p
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where H;(f,t), Hy(f,t) are the CSI of the first antenna and the second antenna, respec-
tively. Through division operation, we can see that the CSI amplitude noises and the ran-

) . Ad )
dom phase offset are both removed. Let a= a1, b= S;e7/91, c = aye 2ry 4= S,e /%2, 7=
a1t

e /2™ 3. The CSI ratio can be rewritten as follows:

az+b
Hr(f’t): cz+d’

®)

Since the parameters g, b, ¢, d are all constant complex numbers, z represents a circle
in complex plane, its phase represents the dynamic reflected path. Thus, the CSI Ratio can
be regarded as the form of Mobius transformation [40].

The result of CSI Ratio is still a complex number with amplitude and phase, the am-
plitude is the ratio of the raw CSI amplitudes and the phase is the phase difference of the
raw CSI phases. It has been proved in [40,41] that the CSI Ratio has the follow properties:

e  CSIRatio has higher signal-to-noise-ratio(SNR) than raw CSI and CSI conjugate mul-
tiplication, and changes following a circular pattern in complex plan;

e If the reflection path length change is exactly one wavelength, the CSI ratio will
rotate exactly 27 in complex plane;

e  If the reflection path length increases, CSI ratio rotates clockwise, otherwise, it
rotates counterclockwise.

4. Methodologies

Since WiMonitor is a long-term human vitality monitoring system, it contains two
major components: long-term area detection and long-term activity intensity estimation
(including motion detection). As for area detection, Wiborder [16] constructed a boundary
sensing parameter and depicted the area-transition-diagram for multi-room area detec-
tion. The sensing boundary parameter is the Rayleigh fitting parameter of the conjugate
multiplication between the CSI of two antennas within a short time window, it reflects the
fluctuation of the amplitude of the conjugate multiplication between the CSI of two an-
tennas. Due to the power amplifier uncertainty of AGC and environmental noises, the
amplitude of the CSI measurements contains a relative large noise. The conjugate multi-
plication operation amplifies the amplitude noise, so the sensing boundary parameter of
Wiborder is not robust enough for long-term monitoring. In this section, we first analyze
the noise of AGC, and then introduce the proposed methodology for removing this noise.
At last, we introduce the CSI metric for activity intensity estimation.

4.1. Remove the Noise Caused by AGC

Figure 1 illustrates the signal processing in the Wi-Fi receiver block diagram [42]. The
signal from receiver antenna is down converted to base band signal y(t) through a mixer.
Due to the path loss and multipath fading, the received signal strength is weaker than the
transmitted signal strength. In order to maintain stable received signal strength for better
wireless communication, AGC could amplify the signal strength dynamically according
to Received Signal Strength Indicator (RSSI). The amplifier gain is large when the received
signal strength is weak, so the amplifier gain can be considered as the function of RSSI
o (RSSI ) . Let yg(t) represents the received signal after AGC, y;(t) can be denoted as:

v, ()= (RSSI)- y(1), ©)
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Figure 1. The signal processing in the Wi-Fi receiver block diagram.

According to the properties of discrete Fourier transfer (DFT), the frequency domain
of received signal after AGC Yj(f,t) can be denoted as:

Y, (f,t)=6(RSSI)-Y(f.1), (10)

where Y(f,t) is the frequency domain of received signal before AGC. According to Equa-
tion (2), the CSI after the AGC gain Hi(f,t) can be denoted as:

H,(f,t)=6(RSSI)-H(f,1), (11)

As for wireless sensing, the CSI is modelled to describe the state of wireless channel,
which is not include AGC, so 6(RSSI) is the noise which needs to be removed. However,
the value of function 6(RSSI) is not accessible due to the hardware limitations of commod-
ity WiFi card. Fortunately, through Intel 5300 CSI Tools [43], we can get RSSI and the gain
coefficient of AGC aggc in every received CSI packet. Since agc is related to 6(RSSI) and
is controlled by RSSI, we can use the function y(agc) instead of 6(RSSI) to remove the noise
of AGC.

Let y4(n) and y(n) be the sampled versions of ys(t) and y(t), respectively. According to
Parseval’s Theorem, we can get Equations (12) and (13):

N-1 ) 1 N-1 5

;\yg(")\ =ﬁkZ_0:\Yg(k) , 12)
N-1 1 N-1

Z:(;\y () =ﬁk§\Y (0, (13)

where N is the number of samples. According to Equations (10), (12) and (13), we can get
Equation (14):

=~

= — (14)

1
NS

n=0

y(age)’ =6 (RSSI)’ =

The denominator of Equation (14) represents the received signal strength before
AGC. Through Intel 5300 CSI Tools, the denominator can be calculated as:

—1 RSSI-44-agc

N 2
Ylp(n)=t0 (15)

n=0
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The numerator of Equation (14) represents the signal power after AGC in the fre-
quency domain, and can be calculated as [42]:

ALEACRZAT AT

where LTF is the Long Training Field, which is used to estimate the CSI [42]. According
to Equations (14)—(16), the function y(agc)? can be denoted as:

N-1 2
S
7 (age) IW'MMW'

10 10

In order to get the relationship of y?(agc) and agc, we have collected a sufficiently large
volume of CSI data. During data collection, we change the positions of transceivers as
much as possible in order to get as many agc values as possible. Then, through Equation
(17), we can obtain the value of y?(agc) corresponding to each agc, and we can get the
relationship of y2(agc) and agc, which is shown in Figure 2. From Figure 2, we can see that
the value of y2(agc) increases with the increases of agc. That is to say, when the received
signal power is small, agc will be increased in order to sustain a stable level of the re-

2
7

(16)

(17)

ceived signal power. Moreover, the three antennas of an Intel 5300 WiFi Card use the same
AGC gain circuit.

35

antenna 1
30 F antenna 2
antenna 3

251 .

20 - 1

~(age)?

15 1

/

30 35 40 45 50 55 60
agc

Figure 2. The relationship between )/2 ( agc) and agc.

Thus, we can use Equation (18) to remove the noise of AGC:

_|H. (1)
‘H(faf)‘—m, (18)

Due to the noise of AGC, the CSI amplitude could fluctuate when there is no human
motion or environment changes. So the thresholds for area detection of Wiborder will
change even in the silence environment, thus Wiborder is not suitable for long-term area
detection. In order to evaluate the effectiveness of our proposed method for remove the
noise of AGC, we collect CSI data for a long time (about 1.5 h) in the silence environment.
Figure 3 shows the impact of AGC and environmental noise on the amplitude.
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Figure 3. The impact of AGC and environmental noise on the amplitude of CSI in the silence environment. (a) CSI ampli-
tude of two antennas; (b) the agc of the corresponded CSI amplitude; (c) the value of the function of agc; (d) the amplitude
of conjugate multiplication between the CSI of two antennas.

Figure 3a shows the CSI amplitudes of two antennas, which contain the environmen-
tal noise and the noise of AGC. From Figure 3a, we can find besides some fluctuations
which caused by environmental noise, the amplitude is divided into two segments at
about 5000 second, as marked by red rectangle. Figure 3b,c shows the coefficients agc and
y(agc), respectively. There is also has a similar but smaller jump at around 3500 s in the
Figure 3a, but the agc of the corresponding CSI amplitude remains relative stable except
for some outliers. These outliers may be caused by environmental noise, how to remove
the environment noise is out of scope of our paper. From Figure 3b,c, we can find that agc
and y(agc) are also divided into two segments at about 5000 s. Therefore, we can conclude
that the jumping of amplitude at about 5000 s is caused by AGC. Figure 3d shows the
amplitude of conjugate multiplication between the CSI of two antennas. From Figure 3d,
we can find that the amplitude of conjugate multiplication between the CSI of two anten-
nas also divided into two segmentations at about 5000 s due to AGC.

As the Rayleigh fitting parameter is obtained from the amplitude of conjugate mul-
tiplication between the CSI of two antennas, when the amplitude contains the noise of
AGC, the parameter is not robust to perform long-term area detection.

The amplitude of CSI and the conjugate multiplication between the CSI of two an-
tennas after removing the noise of AGC is shown in Figure 4. Figure 4a shows CSI ampli-
tude of two antennas after removing the noise of AGC, and Figure 4b shows the amplitude
of conjugate multiplication between the CSI of two antennas after removing the noise of



Sensors 2021, 21, 751

11 of 30

25

AGC. From Figure 4, we can find that after removing the noise of AGC, there only exists
environmental noise, and the amplitude of conjugate multiplication between the CSI of

two antennas is more stable than before removing the noise of AGC.
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Figure 4. The amplitude of CSI and the conjugate multiplication between the CSI of two antennas after removing the noise
of AGC. (a) The amplitude of CSI and conjugate multiplication between the CSI of two antennas after removing the noise
of AGC in the silence environment; (b) the amplitude of conjugate multiplication between the CSI of two antennas after

removing the

150

noise of AGC.

Since we can get more stable CSI amplitude after remove the noise of AGC, we can
obtain more robust Rayleigh fitting parameter compared with Wiborder. Figure 5 shows
the Rayleigh fitting parameter before and after removing the noise of AGC in the silence
environment. Figure 5a shows the Rayleigh fitting parameter before removing the noise
of AGC, from Figure 5a, we can find that the parameter could not remain stable (such as
silence 1 and silence 2) due to environmental noise and the noise of AGC. Figure 5b shows
the parameter after removing the noise of AGC, the parameter is more stable (such as

silence 1 and silence 2) than Figure 5a shows.
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Figure 5. The Rayleigh fitting parameter before and after removing the noise of AGC in the silence environment (a) The
Rayleigh fitting parameter before removing the noise of AGC; (b) The Rayleigh fitting parameter after removing the noise

of AGC.
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4.2. The CSI Metric of Activity Intensity

In this subsection, we introduce the method for the CSI metric of activity intensity,
which include how to extract Doppler frequency from the phase changes of CSI Ratio, and
how to estimate activity intensity coefficient. At last, we combine Doppler frequency and
activity intensity coefficient to construct the CSI metric for activity intensity estimation.

4.2.1. Extracting Doppler Frequency from the Phase Changes of CSI Ratio

In a typical environment with a pair of WiFi transmitter and receiver, as illustrated
in Figure 6 [18]. Due to multipath effect, the signals travel through multiple paths to the
receiver. The static paths are composed of the LoS path and the reflected paths from wall
in the environment. Suppose there is only one dynamic path which induced by human
movement, human movement can cause the path length to change, and introduce a Dop-
pler frequency shift in the received signal [18]:

V Al
Sooier =S ”c ., (19)

where fis the carrier frequency of the signal, vy is the speed of path length change, and
c is the speed of light.

Transmitter

- path — 7 path
. 7
N
~N
= »@
7
7
7
Reflected Reflected
by Wall by Human
B body
Wall Receiver

Figure 6. The illustration of path length change introduced by human movement.

Consider only one signal, its CSI at time fois H(f,t,) = Age 7?0 = A,e /2%, where
Ao is the attenuation, ¢o is the phase of dynamic path at to, and m is the propagation delay.
If the path length changes at a speed of vy, after the short time period ¢, the path length

Vpatht

change Al = vpant, and the propagation delay change is At = . The attenuation

change can be ignored duration a short time period, the CSI of the signal is:

Voatht
, -j2mf| T+t
H(f g t)= dye™ = dje S ] 20)

where ¢1 is the phase of dynamic path at 1 The phase change A¢ of dynamic path can be
denoted as:

\%
A¢ = é _¢0 = 27[fﬂt = 27[fDopp/ert ’ (21)
C
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The Doppler frequency shift in the received signal can be rewritten as:

A
27t

J boppter = (22)

In the real environment, due to multipath-effect, the received signal is a superimpo-
sition signals from all paths. We can use Equation (22) to approximatively estimate Dop-
pler frequency which introduced by human movements.

From Equation (22), we can see that if we can measure the phase change of dynamic
path, we can estimate the Doppler frequency. However, due to the random phase offset
of raw CSI, the phase change cannot be directly measured from raw CSI data. Since CSI
ratio can remove both amplitude noises and phase noises of raw CSI, and has higher SNR
than raw CSI, and the phase change of CSI Ratio represents the path length change of
reflected path. we can use CSI Ratio to obtain the phase change of dynamic path. In the
complex plane, we use H, to denote the tangent vector corresponding to dynamic com-
ponent Hy . We introduce a method of measuring the phase change of dynamic compo-
nent through the tangent vector of dynamic component. Based on geometrical knowledge,
we can conclude that the phase change of the tangent vector is equivalent to the phase
change of the dynamic component, so we can measure the phase change of tangent vector
to obtain the phase change of the dynamic component. We can subtract a sample point
with its successor within a short time period ¢ (such as 0.05 s) to calculate the tangent
vector H,. The calculated result is a sequence of complex vector, and we extract the phase
sequence and unwrap it to eliminate 27t phase jumps. Once we obtain the phase change
A¢ , we can estimate Doppler frequency approximatively using Equation (22). We employ
an example to illustrate the Doppler frequency which obtained by this method. We let a
person walk towards the ligature of the pair of transceivers and then to walk away twice.
In theory, when the person walks towards the ligature of the pair of transceivers, the
movement of the person will introduce negative Doppler frequency due to the change in
radial component of the motion with respect to the receiver, and vice versa. The extracted
Doppler frequency is shown in Figure 7, Figure 7a shows the Doppler frequency spectrum
using this method, and Figure 7b shows the extracted Doppler frequency from Figure 7a.

N
>
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s & 3

Doppler Frequency(Hz)
3 & o @

[

[
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10 12 14 16 18 Time (s)
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Figure 7. Doppler frequency extraction. (a) Frequency-time spectrum; (b) Doppler frequency.

4.2.2. Estimating the Activity Intensity Coefficient

The tangent vector corresponding to the dynamic component is a complex vector,
and its amplitude represents the distances between consecutive samples. In order to find
the physical meaning of the sample distances, we conducted an experiment, the experi-
mental setup is shown as Figure 8. The WiFi transceivers are placed at a distance of 2m to
each other at the same height, and the position of the user is aligned with perpendicular
bisector of the transceivers with a distance of 1.3 m.
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Figure 8. experimental setup.

We let a person perform in-place activities at first, and then wave his arm while
standing still. Figure 9 shows the distances between consecutive samples when the person
doing these two actions. From Figure 9, we can find that the distances between consecu-
tive samples are larger in case of person performing in-place activities than waving his
arm. When performing in-place activities, the torso is the main reflection body part. As
we all know, the torso of human body has a larger reflection area than other body parts
such as arms and legs, so the signal energy reflected from torso is stronger than that re-
flected from arms and legs [44,45], so the amplitude of the tangent vector can represent
the signal energies reflected from different body parts.

5+ in-place activities 1

waving
oL arm |
|
stand \‘ stand
still | still
1H Il V i 4
0 1 1 1 1 1 1 i »

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
sample

sample distance
w
:

Figure 9. The distances between consecutive samples when the person perform two actions.

Suppose the CSI Ratio has M complex data samples within a short time window
(such as 2 s), and the tangent vector of dynamic component also has M complex data sam-
ples. [0, At,,--- Aty ] is the sampling interval of each sample with respect to the first
sample at to, where At1 = 0. We can construct the sample distance vector from tangent
vector:

m=[a(to),a(t0+At2),~-~,a(to+AtM):|, 23)

where a(to) is the amplitude of tangent vector data sample at time to.
Let a(to + Atx) represent the kth element of vector A(t,). In order to find the statistical
properties of a(to+ Atx), we have collected 2 s tangent vector data samples generated by a
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08

silent environment and a dynamic environment (where a human performs in-situ activi-
ties), respectively. Figure 10 shows the probability density function (PDF) of log(a(to +
At)) and a(fo + Atx), respectively. From Figure 10, we see that the distribution of log a(to +
Atx) approximately follows a normal distribution, so the distribution of a(to + Atx) approx-
imately follows a log-normal distribution in both silence environment and dynamic envi-
ronment.
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Figure 10. Probability Density Function (PDF) of log(a(to + Atx)), a(to + Ak) in both a silent environment and a dynamic
environment. (a) PDF of log a(to + Atx) in a silent environment; (b) PDF of a(to + Atk) in a silent environment; (c) PDF of log
a(to + At) in a dynamic environment; (d) PDF of a(fo + Ak) in a dynamic environment;.

The PDF of log-normal distribution is given by:

(e
p(a)=;e sl ”), a>0, (24)

where p and o are the mean and standard deviation, respectively, of the associated normal
distribution.
The geometric mean of the log-normal distribution is given by [46]:

1 M M €
— > In% JBER M I
GM=e" =" =|eln* = (I I akJ , (25)
k=1

We construct the activity intensity coefficient r using Equation (26):
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Based on Equation (26), we can obtain the following two properties of 1:
e In the silent environment, the value of 7 is very small;

e  nislarger when activities are produced by the torso than for activities produced
by the arms and legs.

4.2.3. Constructing the CSI Metric for Activity Intensity Estimation

Since we have obtained the Doppler frequency and the coefficient of activity inten-
sity, we can construct the CSI Metric for activity intensity estimation which combined
with Doppler frequency and the coefficient of activity intensity. When human is still, due
to the environmental noises, small Doppler frequency shifts have been observed as phase
changes in CSI Ratio, and hence we can use an appropriate threshold fireshols to discrimi-
nate human motion and still states. Suppose we have obtained N samples of Doppler fre-
quency sequence [ Jis fosres fise S ] and N samples of coefficient of activity intensity

sequence [771,772,--- /RIS N] in a short time window At (0.4 s), the fraction of time

when the user is in the motion state can be denoted as:

(f ft‘hieshold )
N 7
where the numerator of Equation (27) can represent the time period when the user is non-

still during a short time window. The CSI Metric for activity intensity estimation & can be
constructed as:

ratio = (27)

£ o= M2 fomea)

%/—/
@
where the component @ is the range of activity intensity coefficient, which can roughly
quantize the fluctuation scope of activity intensity during a short time window. The com-
ponent @ is the fraction of time when the user is in the motion state during a short time
window.

In order to evaluate the effectiveness of the proposed metric, we conducted an exper-
iment, and the experiment setup as shown in Figure 8. The volunteer first performing in-
place activities, and then standing still, at last waving his arm, and repeat this procedure
twice. During the experiment, a smartphone was attached to the volunteer’s arm to collect
the accelerometer data, as shown in Figure 11. The build-in accelerometer of the
smartphone is a tri-axial accelerometer, the magnitude of the tri-axial accelerometer data

can be denoted as:
. 2 2 2
magnitude = \Ja,” +a,” +a." (29)

where a, a, and a, are the three axes of the accelerometer.
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Figure 11. The smartphone attached to the volunteer’s arm.

The mean of the magnitude of data can be denoted as:

N
z magnitude,
— g (30)
magnitude = =———,
N
where N is the total number of data samples.
As subtracting the mean of the magnitude data can remove any constant effects such

as gravity [47], we subtracted the gravitational force by subtracting the mean of the mag-
nitude data in the following way:

magNoG = magnitude — magnitude , (31)

magNoG is used as the ground-truth of intensity, magNoG and the CSI metric for these
two actions is shown in Figure 12. The upper subfigure is the ground-truth, and the bot-
tom subfigure is the intensity estimation based on our proposed method. From the upper
subfigure of Figure 12, we can see that when the user is in standing still, ground-truth is
almost zero, and the ground-truth is larger when the user performs in-place activities than
waving arm. From the bottom subfigure of Figure 12, we can see that our Wi-Fi based
activity intensity estimation matches well the ground-truth obtained by accelerometer
sensor. As shown in this experiment, the proposed CSI metric is an effective way to esti-
mate activity intensity.
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Figure 12. The ground-truth and the CSI metric 5 of two actions.

5. Experimental Results Analysis

In this section, we analyse the 22 days of continuous 24-h human vitality monitoring
data of four volunteers which recorded by a WiMonitor system. Section 5.1 presents the
experimental setup. Section 5.2 presents the evaluation for basic information of human
vitality. Section 5.3 presents the statistical analysis results of 22 days continuous 24-h hu-
man vitality monitoring.

5.1. Environmental Setup

We employ miniPCs equipped with off-the-shelf Intel 5300 Wi-Fi cards as the trans-
mitter and receivers. Each receiver is equipped with two antennas. The CSI tool developed
by Halperin [43] is installed on each miniPC to collect the CSI samples of each received
packet. The sampling rate of CSI is 200 Hz. Both the transmitter and receiver work on the
5 GHz band with a 20 MHz channel bandwidth. To evaluate the performance of WiMon-
itor system, we conduct experiments in a real multi-room smart home environment,
which contains four subspaces: a living room, a bedroom, a kitchen and a toilet. The layout
of the environment is shown in Figure 13, and the four subareas are shown as Figure 14.
We employ one transmitter and five receivers to construct multiple transceivers with at
least one receiver per area and placed around the corner. Four web cameras are deployed
inside each area to record the ground-truth.
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Figure 14. The multi-room smart home environment. (a) Living-room; (b) Kitchen; (c) Bedroom; (d) Toilet.

We have implemented WiMonitor as a real-time system, and ask four volunteers to
conduct the experiments. The basic information of these volunteers is shown in Table 1.
We keep WiMonitor system running continuously, and ask the four volunteers to live
alternatively in the smart home alone for 24 h, and perform the daily activities freely in
their own styles (such as sleeping, eating, watching TV, etc.). We conducted a continuous
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22-day experiment, which including 14 days of volunteer 1, 4 days of volunteer 2, 2 days
of volunteer 3 and 2 days of volunteer 4.

Table 1. The basic information of the volunteers.

Volunteer ID Gender Age Height (cm) Weight (kg)
1 Male 34 173 70
2 Male 29 175 68
3 Male 24 170 66
4 Male 24 172 60

5.2. Basic Information of Human Vitality

The basic information of vitality contains the area detection results, the motion status
and activity intensity. In our experiments, at least one Wi-Fi receiver is employed in each
subspace. We can choose the receiver in which the target is located in to obtain the activity
intensity. For example, as illustrated in Figure 13, if the target is located in the bedroom,
the system chooses RX 4 to obtain the activity intensity. If the target is located in the living-
room, the system averages the activity intensities which obtained from RX 1 and RX 2.

As for area detection, we proposed a method to reduce the noise of AGC, thus can
provide stable sensing boundary parameter. Based on the area detection method of Wi-
border, we can achieve long-term area detection.

In order to evaluate the performance of area detection of WiMonitor, we use two
commonly used metrics precision and recall to show the performance. These two metrics
are calculated by true positive (TP), false positive (FP), true negative (TN), and false neg-
ative (FN). For a certain area i, precision and recall are calculated as below:

Precision —i
; P+ FB’ (32)
TP
Recall =——
TP+ FN,’ (33)

We calculated the precision and recall for each area separately, and then take the
average over all areas. Table 2 shows the precision and recall of area detection of WiMon-
itor over 22 days. From Table 2, we can conclude that WiMonitor can achieve high preci-
sion and recall for area detection, these results demonstrate that WiMonitor is accurate
and robust for long-term monitoring.

Table 2. Precision and Recall of area detection of WiMonitor over 22 days.

Day ID

1 2 3 4 5 6 7 8 9 10 11

Precision [%]
Recall [%]

98.5 97.7 97.6 97.5 98.2 97.2 96.7 97.8 97.1 96.9 99.3
97.3 99.0 97.2 98.9 97.0 98.7 98.3 97.0 98.4 98.6 99.0

Day ID

12 13 14 15 16 17 18 19 20 21 22

Precision [%]
Recall [%]

98.6 97.1 98.0 97.0 97.1 97.6 97.5 96.9 97.2 96.3 97.5
96.7 98.2 96.8 97.3 98.1 98.7 98.4 97.2 98.5 98.6 99.5

As for motion detection, WiVit [28] utilized the Doppler-Music method to extract
Doppler frequency shift from conjugate multiplication between the CSI of two antennas,
and used the power of Doppler frequency shift to detect human motion. It may be difficult
to detect the small-scale motion actions, thus could not effectively detection such small-
scale motion, as shown in Figure 15a,b. Fortunately, the proposed CSI metric for activity
intensity estimation in this paper can solve this problem, and can estimate the activity
intensity at the same time, as shown in Figure 15¢,d.
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Figure 15. The comparison of Doppler-Music method and our proposed method for detecting turn over on the bed. (a)
speed-time spectrum obtained from Doppler-Music method; (b) motion state obtained from Doppler-Music method; (c)
Frequency-time spectrum obtained from our proposed method; (d) activity intensity obtained from our proposed method.

Figure 15 shows the comparison of Doppler-Music method and our proposed
method for detecting turn over on the bed. Figure 15a shows the speed-time spectrum
obtained from Doppler-Music method, Figure 15c shows the frequency-time spectrum ob-
tained from our proposed method. From Figure 15a,c, we can see that through our pro-
posed method, we can obtain a clearer spectrum than through Doppler-Music method.
Figure 15b shows the motion detection results obtained from Doppler-Music method, and
as we can see, the action turning over on the bed could not be detected. Figure 15d shows
the intensity of turning over, which obtained from our proposed method.

A continuous 24 h of basic information of human vitality (area detection, motion de-
tection and instantaneous activity intensity) is shown in Figure 16. The upper subfigure,
middle subfigure and bottom subfigure of Figure 16 are the 24 h of area detection results,

instantaneous motion state, and instantaneous activity intensity, respectively.
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Figure 16. A continuous 24 h of basic information of human vitality.

Compared with Figure 16 and the corresponding ground-truth video, we can see that
WiMonitor can achieve long-term vitality monitoring accurately (the markers in Figure 16
match the corresponding ground-truth).

Figure 16 only shows the instantaneous vitality, in order to mine more information
on human vitality, such as the characteristics of daily activities, we need to analyze vitality
information from a perspective of a time period. For example, we can average the instan-
taneous intensity within a short time period (10 s) every 0.05 s, and category the averaged
intensity into different intensity levels (such as silence, slight, moderate, and intense) ac-
cording to the averaged intensity values. Take three types of daily activities (walk, brush
teeth, eating) as example. the averaged activity intensity and the corresponding activity
level of the three types of daily activities are shown in Figure 17. Figure 17a shows the
averaged activity intensity of the three types of daily activities, and Figure 17b shows the
corresponding activity level. From Figure 17, we can find that among the three activities,
the activity level of walking is higher than the other two activities.
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Figure 17. The averaged activity intensity and the corresponding activity level of the three types of daily activities. (a) The
averaged activity intensity of the three types of daily activities; (b) The activity level of the three types of daily activities.

As the WiMonitor system can continuously monitor and record human vitality infor-
mation in real time, we can analyze the overall activity level of the elderly during one day
or even longer to mine the daily living habits and find abnormity.

5.3. Statistical Analysis of 22 Days Human Vitality Information

Since WiMonitor system recorded 22 days of continuous 24 h of human vitality in-
formation data from four volunteers, in this subsection, we can analyze these data over
24-h from different perspective to capture the living habit patterns of different volunteers.

It is well known that in the smart home environment, physical activities are area-
related, such as sleeping usually takes place in the bedroom, and cooking usually takes
place in the kitchen. Analyzing the area occupation rate during 24 h of the elder, could
help us to find out the living habits of the elder. Figure 18 shows the area occupation rate
of volunteer 1 during 24 h. From Figure 18, we can find that the volunteer 1 spends most
of the time in bedroom in one day, and spends the least time in kitchen since the volunteer
1 only enters kitchen to wash dishes after lunch and supper.

[N Living room
4.43%0.73 % ) [ Bedroom
0.34% Kitchen
I Toilet
I Outside

Figure 18. The area occupation rate of volunteer 1 during 24 h.
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Considering different volunteers may have different living habits in the perspective
of long-term area staying information, in order to find whether WiMonitor could capture
the living habits of one user and the diversity of habits of different users, we can analyze
the accumulated hours of area staying of all the volunteers over 22 days, as shown in
Figure 19. The first 14 days are the results of volunteer 1, the fifteenth to eighteenth days
are the results of volunteer 2, the nineteenth to twentieth are the results of volunteer 3 and
the last two days are the results of volunteer 4. From Figure 19, we can observe the regu-
larities in living habits of one volunteer, and the diversities of different living habits be-
tween different volunteers and the same volunteer of different days. For example, the ac-
cumulated hours of different areas from volunteer 1 are very similar during 14 days. The
accumulated hours of different areas from volunteer 1 are different from volunteer 3. For
volunteer 2, the accumulated hours of different areas between different days are also dif-
ferent.
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Figure 19. The accumulated hours of area occupation of all volunteers.

Since activity intensity is more fine-grained sensing than motion, in this subsection,
we only analyze activity intensity instead. As described in Section 5.2, we average the
instantaneous intensity within a short time period (10 s), and categorized activity intensity
into four levels (silence, slight, moderate, and intense) according to accumulated instan-
taneous intensity. Similar to long-term area staying information, we can also analyze the
living habits of the volunteers in the perspective of long-term activity level information.
Figure 20 shows the overall intensity level rate during 24 h of volunteer 1. From Figure
20, we can find that among the four activity levels during 24 h of volunteer 1, the rates of
silence (82.23%) and slight (11.45%) level are much higher than moderate (2.13%) and in-
tense (4.19%). Through the corresponding ground truth video, we can see that besides
sleeping, the volunteer 1 spent most of the time on sedentary behaviors, such as working
at a computer in the bedroom, reading book in the bedroom, and watching TV in the living
room, etc. while spending less time on walking, cleaning, and exercising, etc. Considering
physical activities are area-related, different types of activities usually take place in differ-
ent areas, so the activity levels of different areas are also different. Figure 21 shows the
activity level rate of different areas during 24 h of volunteer 1. From Figure 21, we can
find that the rates of silence and slight level are higher than 90% in bedroom, due to sleep-
ing and working at a computer are performed in the bedroom. The rate of intense level in
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the kitchen is the highest among the four areas, due to cleaning and wash dishes are per-
formed in the kitchen.

419% [ silence
213% [ siight
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Figure 20. The overall intensity level rate during 24 h of volunteer 1.
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Figure 21. The intensity level rate of different areas during 24 h of volunteer 1.

In order to obtain the living habits of one user and the diversity habits of different
users in the perspective of long-term activity level information, we can also analyze the
activity level rate of all the 22 days of four volunteers in a specific area and in all the four
areas overall. Figure 22 shows the intensity level rate of all the volunteers in the living
room. Similar to Figure 19, the first 14 days are the results of volunteer 1, the fifteenth to
eighteenth days are the results of volunteer 2, the nineteenth to twentieth are the results
of volunteer 3 and the last two days are the results of volunteer 4. From Figure 22, we can
also spot regularities in living habits of one volunteer, and the diversity of different living
habits between different volunteers and the same volunteer of different days.
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Figure 22. The activity level rate of all the volunteers in the living room.

Figure 23 shows the intensity level rate of all the 22 days of four volunteers in all
areas overall. The first 14 days are the results of volunteer 1, the fifteenth to eighteenth
days are the results of volunteer 2, the nineteenth to twentieth are the results of volunteer
3 and the last two days are the results of volunteer 4. From Figure 23, we find that all the
four volunteers spend most of their time in the silence and slight activity level, which
could be considered as a sedentary lifestyle.

I silence
I slight
[ moderate
I intense

intensity level rate

Day Index

Figure 23. The activity level rate of all the volunteers in all areas.

Through analysis statistical properties of human vitality information, we not only
can capture the living habits of users, but also detect abnormality. Take sleep as an exam-
ple, since sleep plays an important role in our health and well-being. Low quality of sleep
will increase the risk of sleep disorders. In this paper, we can use instantaneous activity
intensity to analysis body movements during sleep. We consider motion states as those
instantaneous activity intensity values which are larger than zero. Figure 24 shows the
instantaneous activity intensity and the corresponding motion status during sleep of vol-
unteer 1. From Figure 24, we can find that the body movement during sleep can be
roughly divided into three stages: stage 1, stage 2 and stage 3. The body movement is
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frequent in stage 1, as the volunteer 1 is going to sleep. The body movement is less fre-
quent in stage 2 and is the most frequent in stage 3.
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Figure 24. The instantaneous activity intensity and the motion status during sleep of volunteer 1.

For an individual subject, it is true that the body movement during sleep over one
night cannot tell if the subject sleeps well or not, however, the body movement pattern
over weeks or months could be a good indicator for one’s sleep quality (especially for very
abnormal patterns). In this paper, we used the accumulated body movement time during
sleep to represent the body movement frequency. Figure 25 shows the accumulated mo-
tion time during sleep of all the volunteers, the first 14 days are the accumulated motion
time of volunteer 1. Only consider volunteer 1, we can find that during the 14 days, the
accumulated motion time in the ninth and tenth day are much longer than the other
twelve days. Through compared with the corresponding ground-truth video, we can find
that the volunteer 1 suffered from insomnia for some reason in those two nights.
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Figure 25. The accumulated motion time during sleep of all the volunteers.
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6. Discussion

In recent years, many device-free indoor localization systems have been proposed,
and the existing device-free indoor localization systems can be categorized as fingerprint-
based and geometric mapping-based. Many methodologies have been proposed to im-
prove the performance, such as deep learning and transfer learning [48,49], etc. Wang et
al. [48] presented a deep learning based indoor fingerprinting system DeepFi, the DeepFi
architecture has four hidden layers, and a probabilistic data fusion method is developed
for online localization. The mean localization error of DeepFi is about 0.9 m. Rao et al. [49]
proposed DFPWL system which used transfer deep learning method to cope with time-
varying characteristic of CSI which caused by environment changes, the mean localization
error about 1.1 m is achieved in [49]. Unlike fingerprint-based method, geometric map-
ping-based method does not need to build fingerprint database. MaTrack [16] employ the
angle-of-arrival (AoA) information to locate the user. The median localization accuracy of
MaTrack is about 0.6 m. SiFi [19] uses a single AP to locate the target. The median locali-
zation accuracy is about 0.93 m.

Though the above two types of localization approaches are very useful in many ap-
plications, such as indoor navigation, augmented reality, disaster rescue, etc. However, in
a typical home environment, the rooms are usually divided by walls, detecting which
room a person is staying is essential for daily life monitoring. This requires the system to
detect the precise sensing boundary between different rooms. However, the above two
types of localization approaches couldn’t fulfill this requirement, because 20 cm localiza-
tion error could make wrong judgement of room-level localization when a person is close
to the room door. Different from the above works, our proposed approach uses a novel
CSI metric for through-wall discrimination to determine the precise sensing boundary be-
tween different rooms, thus can achieve accurate room-level detection (the precision and
recall of our approach are both higher than 96%).

According to [50], on average, there are already more than eight Wi-Fi-enabled de-
vices in a typical U.S. home environment. In China, with the rapid development of the
Internet of Things, Wi-Fi devices are ubiquitous in home environments, ranging from Wi-
Fi routers and mobile phones to Wi-Fi-enabled home appliances (e.g., TVs, refrigerators).
We strongly believe in the near future these Wi-Fi enabled devices could be utilized for
contactless sensing without additional cost, enabling various sensing applications in a
home setting, such as fall detection, respiratory monitoring, continuously daily activity
monitoring (if Wi-Fi is outdated, there will be Wi-Fi like wireless signals such as 5G/6G).

7. Conclusions

In this paper, we propose a continuous long-term human vitality sensing system
called WiMonitor using commodity Wi-Fi devices. For an elder who lives alone, the Wi-
Monitor system could capture vitality information continuously in real-time without any
human effort on offline-training. WiMonitor could achieve continuous long-term accurate
area detection by removing the noise of AGC. Moreover, we construct a CSI metric for
estimate the instantaneous activity intensity real time. We recruit 4 volunteers to conduct
a continuous 22-days experiment, and record the long-term vitality data. Through analy-
sis, we can conclude that the recorded long-term vitality information can be used to obtain
the routine habits of the user and detect any abnormality. As the next step, we are going
to use our system to track vitality information over a longer term, with the hope that we
could observe the long-term routine change trends using the data from several months.
We envision our WiMonitor system could be a useful system to provide abundant da-
tasets of the daily living of the elderly to help not just researchers but also healthcare per-
sonnel.
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